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Autoantibodies directed against self-antigens are characteristic
features of a number of human diseases.  In systemic rheumatic
diseases, these include antibodies that react with extracellular
molecules; the cell membrane; nuclear and cytoplasmic
components.  Our laboratories have been interested in
understanding autoimmune responses in systemic lupus
erythematosus and related disease states and using human
autoantibody as molecular probes in studying the cell biology
of target antigens.  This review summarizes our research
efforts in dissecting the autoimmune response to the Golgi
complex via expression cloning using human autoantibodies.
We have cloned 4 of 5 known Golgi autoantigens that are
referred to as golgin-95/GM130, golgin-97, golgin-160/GCP170,
and golgin-245, respectively based on their molecular weights.
The fifth is giantin, also known as macrogolgin or GCP372.
Interestingly, the amino acid sequences deduced for all Golgi
autoantigens indicate that they are proteins with
predominantly coiled-coil domains and non-alpha helical
domains at the N- and C-termini.  The current postulate is that
these coiled-coil rich proteins like golgin-95/GM130 form
intermolecular complexes with a docking protein p115 that has
been shown to be important for Golgi vesicular traffic.  An
alternative nonexclusive hypothesis is that these coiled-coil rich
proteins are the components of the “strings” that are
important in linking and guiding vesicles in intercisternae
traffic.  How this family of coiled-coil proteins and their
complexes become autoimmune targets remains to be
determined.

Patients with certain autoimmune diseases are characterized
by the spontaneous occurrence of autoantibodies directed
against a variety of tissue antigens (Tan, 1989).  These include
cell membrane components such as hormones and hormone
receptors, immunoglobulins, proteins involved in fibrinolysis,
complement proteins, and intracellular cytoplasmic and
nuclear components.  Some of the target antigens are tissue
specific, while others are variably expressed in differentiated
and undifferentiated tissues.  The studies of many
intracellular autoantigens illustrate a number of important
features concerning the clinical importance of human
autoantibodies.  First, certain autoantibodies seem to be
restricted in one or a few diseases and, therefore, have useful
diagnostic and prognostic implications.  Second, patterns of
end organ involvement are sometimes related to the presence
of certain autoantibodies suggesting that they may have
pathogenic significance.

An equally important outcome of studies of autoantigens has
been the tremendous increase in our understanding of their
molecular and cell biology (Tan, 1989; Tan et al., 1988).  First,
the majority of autoantibodies studied have been shown to
bind to highly conserved determinants on ubiquitous cellular
proteins.  Second, most of the autoantibodies associated with

systemic rheumatic diseases are often directed to functional
macromolecules rather than to structural components.  These
include histones, DNA and HMG of the nucleosome, several
proteins of the small nuclear ribonucleoprotein (snRNP)
complex, various components of the mitotic apparatus
including centrosomes, kinetochore and centromere (CENPs)
components, components of the nucleolus and the nuclear
membrane.  Third, where systems are amenable to testing, it
has been shown that the autoantibodies are able to inhibit the
cellular functions served by the antigens.  Examples include
the inhibition of aminoacylation of tRNAs; the relaxation of
supercoiled DNA; inhibition of precursor mRNA splicing; and
the transcription of ribosomal RNA.  Taken together, these
observations suggest that the conserved epitopes recognized
by human autoantibodies are often the functional or active
sites of these intracellular proteins.

The study of human autoantibodies and their use as probes of
cell structure and function has had an important impact on
the disciplines of molecular and cell biology (Tan, 1991).  For
immunologists, one of the interesting objectives is the
identification of macromolecules and organelles, such as the
Golgi complex, that are targets of the autoimmune response.
For cell biologists, attempts to unravel cellular events can be
enhanced by the availability of specific autoantibody probes.

The Golgi compartment

In 1898, exactly 100 years ago, Camillio Golgi described a
novel intracellular network which now bears his name (Golgi,
1898).  The Golgi complex is an elaborate cytoplasmic
organelle that has a prominent function in the processing,
transporting, and sorting of intracellular proteins (reviewed in
Gonatas, 1994; Mellman, 1995; Nilsson and Warren, 1994).
Structurally, the Golgi complex is localized in the perinuclear
region of most mammalian cells and is characterized by stacks
of membrane-bound cisternae as well as a functionally
distinct trans- and cis-Golgi networks (TGN, CGN, Figure 1).
It is proposed that the sorting functions of the Golgi complex
are performed in TGN and CGN while the processing
functions take place in the cis-, medial-, and trans-
compartments (Mellman and Simons, 1992).  The intracellular
transport of newly synthesized proteins requires directed
movement from the endoplasmic reticulum (ER), via
transport vesicles to the cis-, medial- and trans-compartments
of the Golgi complex, and in some cases, to the plasma
membrane (Banfield et al., 1994; Farquhar and Palade, 1981;
Griffiths et al., 1989; Mellman, 1995; Nilsson and Warren,
1994; Rothman and Orci, 1992).  Coatomer proteins COPI-
coated vesicles are currently understood to mediate this
anterograde transport across the intervening cisternae
(Rothman, 1994; Schekman and Orci, 1996).  Protein transport
through the Golgi complex is mediated by small vesicles
budding from a donor membrane and are targeted to, and
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fused with, an acceptor membrane (Rothman and Orci, 1992).
Transport vesicles are known to move towards the TGN and
are also hypothesized to move in the ‘retrograde’ direction to
the CGN via the coat protein complex (coatomer proteins, e.g.
β-COPs, ref. (Banfield et al., 1994; Barlowe et al., 1994; Duden
et al., 1991; Orci et al., 1997; Pelham, 1994; Seaman and
Robinson, 1994; Serafini et al., 1991; Waters et al., 1991).  The
pathways for the vesicular transport are shown schematically
in Figure 1 and are thought to be important for the recycling
of these membranous structures.  The signals that control the
vesicular traffic are poorly understood although it is known
that intracellular microtubules are important components
(Kreis, 1990; Mizuno and Singer, 1994).  Other proteins of the
Golgi complex believed to play a role include families of

proteins such as the adaptins (Pearse and Robinson, 1990),
GTP-binding proteins (Jena et al., 1994; Martinez et al., 1994;
Nuoffer et al., 1994; Oka and Nakano, 1994; Pfeffer, 1994),
ADP ribosylation factors (ARFs) (Stearns et al., 1990), and
resident enzymes (reviewed in (Farquhar, 1985; Nilsson and
Warren, 1994).  A rat peripheral membrane protein p115/TAP
has been identified as a component necessary for intra-Golgi
transport (Barroso et al., 1995; Waters et al., 1992) and is
proposed to be the mammalian homolog of Uso1 a protein
required for endoplasmic reticulum to Golgi vesicular
transport in Saccharomyces cerevisiae (Sapperstein et al.,
1995).

Figure 1. Golgi compartments and function. Some proteins are transported to the cell surface after synthesis at the endoplasmic
reticulum (ER), sorting, and processing in the Golgi complex. The trans-Golgi network (TGN) and cis-Golgi network (CGN) are
responsible for protein sorting via vesicle transport from ER to CGN and also in retrograde direction. In contrast, granins are
sorted though the TGN and stored in secretory granules. Some granins are known to be proteolytically processed and secreted
to extracellular space.

Autoantigens of the Golgi compartment

Autoantibodies directed against the Golgi complex were first
identified in the serum of a Sjögren's syndrome (SS) patient
with lymphoma (Rodriguez et al., 1982).  Several isolated
reports have described anti-Golgi antibodies in systemic
rheumatic diseases including SS and systemic lupus
erythematosus patients (Blaschek et al., 1988; Fritzler et al.,
1984; Hong et al., 1992; Kooy et al., 1994; Kooy et al., 1992;
Renier et al., 1994; Rodriguez et al., 1982; Rossie et al., 1992),
and in a variety of other disease conditions including
idiopathic Raynaud’s phenomenon (Gentric et al., 1990),
idiopathic cerebellar ataxia (Fritzler et al., 1993; Gaspar et al.,
1988), active Wegener’s granulomatosis (Mayet et al., 1991),
paraneoplastic cerebellar degeneration (Greenlee et al., 1988;
Hida et al., 1994), stiff man syndrome (Butler et al., 1993), and
viral infections including the Epstein Barr virus (EBV)
(Huidbuchel et al., 1991), hepatitis B (Funaki et al., 1996), and
the human immunodeficiency virus (HIV) (Gentric et al.,

1991).  Immunoblotting and immuno precipitation studies
have shown that there are heterogeneity of reactivities among
anti-Golgi sera with at least 14 different Golgi complex
autoantigens ranging from 35 to 260 kDa (Kooy et al., 1994;
Renier et al., 1994).  Immunofluorescence studies suggest that,
like many other autoantigens, Golgi autoantigens are
evolutionarily conserved and autoantibodies are able to
recognize homologous proteins across species (Fritzler et al.,
1993).

Within the last several years, our laboratories and others have
cloned and identified five novel Golgi autoantigens (Table 1,
Figure 2).  This has been achieved primarily by expression
cloning using human autoantibody probes.  These are referred
to as golgin-95 (GM130), golgin-97, golgin-160, golgin-245
(p230), and giantin/macrogolgin/GCP372 respectively based
on their molecular weights estimated from SDS-PAGE under
denaturing condition.  Interestingly, the amino acid sequences
deduced for all golgins show that these proteins are
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composed of predominantly α-helical coiled-coils except for
the N- and C-terminal domains (Figure 4 and 5).  The
potential implication is that these Golgi proteins may have

common biochemical characteristics that are responsible for
inducing autoimmune response in certain disease states.

Figure 2. A list of Golgi coiled-coil protein autoantigens.

Golgin-95/GM130 and golgin-160/GCP170

The first two Golgi complex autoantigens were cloned in our
laboratory using autoantibodies from a systemic lupus
erythematosus patient (Table 1, Figure 3).  These Golgi
complex autoantigen cDNAs encode proteins of 95 and
160kDa, and thus termed golgin-95 and golgin-160
respectively (Fritzler et al., 1993).  Sequence analysis showed
that golgin-95 and golgin-160 are composed of α-helical
coiled-coil domains sharing 43% overall sequence similarity
and, therefore, may be functionally related proteins (Figure 4).
Subsequent work from the isolation of rat liver Golgi matrix
proteins, Nakamura et al (Nakamura et al., 1995) have shown
that a 130kDa protein (GM130) may be the rat homolog of
golgin-95.  Our recent data confirmed that a ~130kDa protein
is detected in HeLa cells using antibody to the previously
observed 95kDa protein; thus our new data is consistent with
the mol wt reported for GM130 and the 95kDa protein was
most likely a degradation product of GM130.  A recent report
showed that the N-terminal 73 amino acid residues of GM130
interacts with the vesicle docking protein p115 and therefore
may play a role in vesicular traffic between ER and Golgi
stacks (Nakamura et al., 1997).  In addition, the same
laboratory reported that GM130 also interact strongly with
GRASP65, a Golgi reassembly and stacking protein of 65kDa
involved in the reformation of Golgi Complex after mitotic
cell division (Barr et al., 1997).
A mouse testis protein known as Male-Enhanced Antigen-2
(Mea-2) originally identified with a monoclonal
histocompatibility Y (H-Y) antibody was cloned and found to
be highly homologous to human golgin-160 (Kondo and

Sutou, 1997).  Although conclusive data is not presented,
some role for golgin-160 in spermatogenesis is postulated
based on the high level of expression of this gene in testis.
Recently, the laboratory of Ikehara (Misumi et al., 1997)
reported the cloning of a full-length cDNA by extending from
our earlier reported partial sequence of golgin-160.  The group
of Ikehara has named this protein GCP170 based on their
estimated mol wt for this protein.  It should be noted that the
full-length protein contains an additional 160 proline-rich
amino acids at the N-terminus compared to Mea-2.  Based on
these observations, Misumi et al (Misumi et al., 1997)
postulated the full-length protein has an N-terminal globular
head, a long stalk composed of coiled-coil domains, and a C-
terminal short tail.  It was also shown that GCP170 is localized
to the cytoplasmic face of the Golgi membrane but not
associated with -COP subunits of coatomers.

Giantin/macrogolgin/GCP372

The third autoantigen of the Golgi complex was
identified by Seelig et al as macrogolgin (Seelig et al.,
1994a).  It was so named because of its large size
(376kDa) and subsequent studies showed that
macrogolgin is identical to a previously described large
protein known as giantin (Linstedt and Hauri, 1993;
Seelig et al., 1994b).  In 1994 Ikehara and his colleagues
reported a 372kDa Golgi complex autoantigen known as
GCP372 (Sohda et al., 1994).  When sequence alignments
were performed, it was apparent that GCP372 has an
extra 5 amino acids (QLSSM) “inserted” at residue 215 of
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the giantin amino acid sequence.  Thus GCP372 could be
derived from an alternatively spliced mRNA transcribed
from the same gene as giantin/macrogolgin.  This same
laboratory (Toki et al., 1997) recently reported the
cloning of the rat homolog GCP364 and, in agreement
with other earlier studies, concluded that giantin is
anchored to the Golgi membrane via C-terminal
hydrophobic domain with the coiled-coil domain
extending to the cytoplasm (Figure 5); it is also

postulated that this molecule may be involved in the
formation and/or maintenance of the Golgi structure.
Recently, Sonnichsen et al (Sonnichsen et al., 1998)
proposed that giantin interacts with p115 which in turn
binds to GM130 on Golgi membranes to promote vesicle
traffic.

Figure 3. Indirect immunofluorescence detection of Golgi Complex in human HEp-2 cells. (A) rabbit anti-golgin-95/GM130
antibody. (B) rabbit anti-golgin-160 antibody. Nuclei were counter stained with DNA stain TROPO.

 Golgin-245/p230

Using a serum from a Sjögren’s syndrome patient who had
glomerulonephritis, the fourth golgin cloned was a 245kDa
protein, named golgin-245 (Fritzler et al., 1995).  This protein
was also characterized by a dominant coiled-coil domain and
a granin signature motif found in a family of proteins known
as granins.  Granins are acidic proteins present in the
secretory granules of a wide variety of endocrine and
neuroendocrine cells.  About the same time, another group
described the nucleotide sequence from a previously reported
a 230kDa Golgi complex autoantigen (p230) which is now
known to be identical to golgin-245 (Erlich et al., 1996; Kooy et
al., 1992).  The study of p230 described alternatively spliced
products suggesting that there may be further heterogeneity
of this Golgi complex antigen (Erlich et al., 1996).  A third
group of investigators has recently reported the cloning of the
same protein using the serum from a patient with hepatitis B
(Funaki et al., 1996).

Golgin-97

The fifth Golgi autoantigen cDNA cloned with the serum
from another Sjögren’s syndrome patient was shown to
encode a protein of 97kDa (golgin-97).  Like golgin-245,
golgin-97 has a predominant coiled-coil domain and a granin
signature sequence that implicates its potential role associated
with secretory granules.  Among all the cloned Golgi complex
autoantigens analyzed to date, golgin-97 appears to be the
most common target associated with Sjögren’s syndrome
(Griffith et al., 1997).  Although anti-Golgi autoantibodies are
rare in Sjögren’s syndrome patients, their detection may
represent a subgroup of patients with interesting defects
associated with Golgi function.  Given that the sera used for
the cloning of both golgin-245 and golgin-97 came from
patients with SS and the existence of other reports of anti-

Golgi antibodies detected in patients with SS, it is intriguing
to consider that these autoantibody-autoantigen systems play
a significant role in the secretory defects in Sjögren’s exocrine
glands (Table 1).

Coiled-coil domains of golgins

The golgins are related as they have similar overall secondary
structures as predicted by analysis programs such as COILS
(Lupas et al., 1991) and PAIRCOIL (Berger et al., 1995).
Figures 4 and 5 show the prediction of coiled-coil domains
calculated by COILS for each of the five Golgi autoantigens.  It
is interesting that the golgins also show significant sequence
similarity to several cytoskeleton-related proteins including
kinesin (Bloom and Brashear, 1989), the 150 kD dynein-
associated protein (Holzbaur et al., 1991), the myosin family
proteins (heavy chain myosin, tropomyosin), and desmin.
Kinesin, a microtubule-stimulated ATPase (Bloom et al., 1988;
Kuznetsov and Gelfand, 1986), has been reported to be a
motor for microtubule-mediated Golgi-to-ER membrane
traffic (Lippincott-Schwartz et al., 1995).  In support of this
observation, it has been demonstrated that antibodies to
kinesin and myosin bind to the Golgi complex (Fath and
Burgess, 1993; Fath and Burgess, 1994; Marks et al., 1994).  To
extend the comparison, golgin-160 and macrogolgin have
sequence similarity to the yeast cytoskeleton-related protein
Uso1, a yeast protein which is required for protein transport
from the endoplasmic reticulum to the Golgi apparatus
(Nakajima et al., 1991).

The human autoimmune response to golgins appears to be
highly specific as many anti-Golgi sera react with only one of
these autoantigens.  It is therefore unlikely that the immune
response is merely directed to cross-reactive the coiled-coil
region in these molecules.  In addition, coiled-coil domains
have been noted in many other non-Golgi autoantigens
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including nuclear mitotic apparatus protein NuMA (Andrade
et al., 1996; Price et al., 1984), lamin B (Chou and Reeves, 1992;
Konstantinov et al., 1996; Pollard et al., 1990), myosin heavy
chain (von Muhlen et al., 1995), 52 kDa SS-A/Ro (Buyon et al.,

1994; Chan et al., 1991), and 70/80 kDa Ku antigens (Chou et
al., 1992; Reeves et al., 1991).

Figure 4. Coiled-coil domains of golgin-95/GM130, golgin-97, golgin-160/Mea-2, and golgin-245. Each macromolecule is
depicted as a plot of probability for the formation of coiled-coils calculated by the COILS program (Lupas et al., 1991).

Granin signature in golgin-97 and golgin-245

Granins are a family of acidic proteins present in the secretory
granules of a wide variety of endocrine and neuroendocrine
cells (Huttner et al., 1991; Simon and Aunis, 1989).  Two
consensus sequences have been reported.  The granin 1
signature is located at the carboxyl terminus of the proteins
and has been identified in all granin family proteins with the
exception of murine secretogranin 2.  The second consensus
sequence, granin 2, has been described in chromogranin A
and B and is characterized by two cysteine residues bound
together near the amino terminus of the protein.  The acidic
charge of these proteins has been attributed to high content of
glutamic and aspartic acid.  The function of these proteins or
these signatures has not been clearly defined but current
evidence suggests that they function in modulator-processing
or packaging of neuropeptides.  In addition, granins such as
chromogranins and secretogranins are precursors that are
proteolytically processed to biologically active secretory
peptides (Natori and Huttner, 1994).

Decapeptides ESLALEELEL and ESLGKMEQEL
corresponding to amino acids 388-397 in golgin-245 and
amino acids 193-202 in golgin-97 were identified as a granin 1
‘signature’ which has the consensus pattern {DE}-{SN}-L-
{SAN}-x(2){DE}xEL (Huttner et al., 1991; Simon and Aunis,
1989).  The predicted isoelectric points (pI) for golgin-245 and
golgin-97 are 5.15 and 5.09 respectively which are similar to
those reported for granins (pI 4.9-5.6).  The anionic pIs are

consistent with the high content of glutamic and aspartic acid
of these proteins.  Golgin-245 has 17% and 4% while golgin-97
has 14% and 3% of glutamic and aspartic acid respectively.
These features are consistent with those reported for granins.
Recent review of available golgin-95/GM130 and golgin-
160/GCP170 sequences showed no evidence for granin
signature even when one mismatch is allowed.  The
significance of identifying granin signature may become
apparent when immuno histocytochemical data is available
for golgin-97 and golgin-245 at the electron microscopy level.

Proposed function for golgins

The observation that all Golgi complex autoantigens cloned to
date have predominantly central rod-like �-helical coiled-coil
structures and non-helical termini may be a clue to their
function.  Recent publication by Orci, Perrelet and Rothman
(Orci et al., 1998) proposes a “string theory” for the
organization of Golgi vesicles primarily based on their
electron microscopy and freeze-fracture analysis of Golgi
fractions purified from Chinese hamster ovary cells.  The
interpretation is that transport vesicles remain locally within
the Golgi stack during their lifetime, near their origin,
favoring a processive pattern of transport in which vesicles
transfers occur preferentially between adjacent cisternae in the
stack (Orci et al., 1998).  The proposed theory accounts for the
processive transport by postulating that vesicles are linked by
“strings” which will restrict and keep the vesicles in close
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proximity.  It is highly interesting and, of course, entirely
reasonable to propose that these strings are composed of
macromolecules rich in coiled-coil domains like GM130 and
giantin (Orci et al., 1998).  The string theory postulates a
predominate role for the coiled-coil rich Golgi proteins in
holding transport vesicles in place. An additional function for
this family of proteins may be in guiding vesicular traffic via
specific interactions programmed into individual members of
the coiled-coil rich protein family.  Recent studies by Warren
and his colleagues demonstrated the interaction of p115 with
giantin and GM130 and thus p115 may serve as a bridge for
COPI vesicles and Golgi membrane (Sonnichsen et al., 1998).
In addition, the data from the same laboratory suggest that
protein like golgin-95/GM130 are directly associated with

GRASP65, which is important in the stacking of Golgi
cisternae (Barr et al., 1997).

In summary, based on molecular sequence data, several Golgi
autoantigens are defined as proteins rich in α-helical coiled-
coil domains with non-helical termini.  These represent a
subfamily of proteins that may play structural roles in
supporting vesicles associated with the Golgi complex as well
as stacking of Golgi cisternae.  The rod domains are likely to
participate in self-association as well as interaction among
different family members.  Their roles in vesicular traffic may
soon become apparent as they are being actively investigated
in many laboratories.

Figure 5. Comparison of coiled-coil domains of human and rat macrogolgin/giantin. The probability for the formation of
coiled-coils is calculated by the COILS program (Lupas et al., 1991). A transmembrane (TM) hydrophobic region at the C-
terminus is postulated to be responsible for anchoring giantin to Golgi membrane with much of the molecule extending to the
cytoplasm.

Table 1: Features of Golgi complex autoantigens and disease link.
Name Native protein

(kDa)
Disease Screening
Antibody*

GenBank
Accession
Number

Reference

golgin-95 130 SLE/cerebellar ataxia LO6147 (Fritzler et al., 1993)
golgin-160 160 SLE/cerebellar ataxia LO6148 (Fritzler et al., 1993)
macrogolgin/giantin 376 Scleroderma and

Sjögren’s syndrome
X75304 (Linstedt and Hauri,

1993; Seelig et al.,
1994a)

GCP372 372 Rheumatoid arthritis D25542 (Sohda et al., 1994)
golgin-245 245 Sjögren’s syndrome &

glomerulonephritis
U31906 (Fritzler et al., 1995)

p230 230 Sjögren’s syndrome U41740 (Erlich et al., 1996)
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golgin-97 97 Sjögren’s syndrome U51587 (Griffith et al., 1997)
Rat GCP364 364 Rheumatoid arthritis D25543 (Toki et al., 1997)

Abbreviations: SLE=systemic lupus erythematosus
*Diagnosis of patient whose antibody was used for screening cDNA library.
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