Plant Biotechnology

Electronic Journal of Biotechnology ISSN: 0717-3458 Vol. 11 No. 2, Issue of April 15, 2008
© 2008 by Pontificia Universidad Católica de Valparaíso -- Chile Received November 28, 2006 / Accepted August 27, 2007
DOI: 10.2225/vol11-issue2-fulltext-8
RESEARCH ARTICLE

Induction of in vitro flowering in Capsicum frutescens under the influence of silver nitrate and cobalt chloride and pollen transformation

Ashwani Sharma
Plant Cell Biotechnology Department
Central Food Technological Research Institute
Mysore - 570 020, Karnataka State, India
Tel: 91 0821 2516 501
Fax: 91 0821 2517 233
E-mail: pcbt@cftri.res.in 

Vinod Kumar
Plant Cell Biotechnology Department
Central Food Technological Research Institute
Mysore - 570 020, Karnataka State, India
Tel: 91 0821 2516 501
Fax: 91 0821 2517 233
E-mail: pcbt@cftri.res.in

Parvatam Giridhar
Plant Cell Biotechnology Department
Central Food Technological Research Institute
Mysore - 570 020, Karnataka State, India
Tel: 91 0821 2516 501
Fax: 91 0821 2517 233
E-mail: pcbt@cftri.res.in

Gokare Aswathanarayana Ravishankar*
Plant Cell Biotechnology Department
Central Food Technological Research Institute
Mysore - 570 020, Karnataka State, India
Tel: 91 0821 2516 501
Fax: 91 0821 2517 233
E-mail: pcbt@cftri.res.in

*Corresponding author

Financial support: This study is covered under Indian patent (Del No. #764/Del/2004).

Keywords: Capsicum frutescens, cobalt chloride, in vitro flowering, pollen transformation, regeneration, silver nitrate.

Abbreviations:

ANOVA: Analysis of Variance
LB: Luria Bertani
MS: Murashige and Skoog

Abstract   Full Text

The influence of silver nitrate (AgNO3) and cobalt chloride (CoCl2) on shoot multiplication and in vitro flowering in Capsicum frutescens Mill. was investigated. Exogenous administration of AgNO3 and CoCl2 at a concentration of 30 µM resulted in the maximum tissue response in terms of shoot length and number of shoots after 45 days culturing on MS medium. Both silver nitrate (40 µM) and cobalt chloride (30 µM) influenced in vitro flowering after 25 and 45 days respectively. This is the first report on in vitro flowering in C. frutescens. The study also demonstrated successful transformation of pollen obtained from the in vitro flowers. Since capsicum is highly recalcitrant to in vitro plant regeneration, the results of the study may be highly useful in transformation of capsicum using germ free in vitro flowers.

Supported by UNESCO / MIRCEN network