Microbial Biotechnology

Electronic Journal of Biotechnology ISSN: 0717-3458 Vol. 12 No. 2, Issue of April 15, 2009
© 2009 by Pontificia Universidad Católica de Valparaíso -- Chile Received May 24, 2008 / Accepted November 3, 2008
DOI: 10.2225/vol12-issue2-fulltext-6
TECHNICAL NOTE

Novel antiviral activity of dialdehyde starch

Le Song
Department of Materials Science and Engineering
University of Florida
Gainesville, Fl32611, USA
Tel: 1 352 846 3793
Fax: 1 352 846 3355

Caroline Cruz
Department of Microbiology and Cell Science
University of Florida
Gainesville, FL 32611, USA

Samuel R. Farrah
Department of Microbiology and Cell Science
University of Florida
Gainesville, FL 32611, USA

Ronald H. Baney*
Department of Materials Science and Engineering
University of Florida, Gainesville, FL32611, USA
Tel: 1 352 846 3785
Fax: 1 353 846 3355
E-mail: rbane@mse.ufl.edu

*Corresponding author

Keywords: antiviral, biocide, dialdehyde starch, virus.

Abbreviations:

DAS: dialdehyde starch
PBS: phosphate buffer saline
PFU: plaque forming units
QAC: quaternary ammonium compound
TSB: tryptic soy broth

Abstract   Full Text

A significant effort worldwide is being directed toward development of novel biocides against drug-resistant bacterial and viruses because of the significant potential human infection risks in the general population. We report here the discovery of a strong antiviral biocide, dialdheyde starch (DAS). Antiviral tests were carried out against three non-envelop viruses, including two bacterial viruses MS2 and PRD1, and one human virus Poliovirus. Dialdehyde starch aqueous suspensions were effective biocides against these three test viruses in a 1 hr exposure test. The antiviral activity was significantly enhanced in a four-hour exposure test, with maximum seven orders of magnitude reductions against MS2 and PRD1, and four-order reduction against Poliovirus. The antiviral activity of dialdehyde starch was found to be pH dependent, being more active in alkaline and acidic conditions than in neutral conditions.

Supported by UNESCO / MIRCEN network