Process Biotechnology
 

Environmental Biotechnology

Electronic Journal of Biotechnology ISSN: 0717-3458 Vol. 13 No. 1, Issue of January 15, 2010
© 2010 by Pontificia Universidad Católica de Valparaíso -- Chile Received March 14, 2009 / Accepted August 6, 2009
DOI: 10.2225/vol13-issue1-fulltext-6
RESEARCH ARTICLE

Simultaneous effects of pH and substrate concentration on hydrogen production by acidogenic fermentation 

Genoveva Cubillos
Escuela de Ingeniería Bioquímica
Pontificia Universidad Católica de Valparaíso
Valparaíso, Chile

Ramon Arrué
Escuela de Ingeniería Bioquímica
Pontificia Universidad Católica de Valparaíso
Valparaíso, Chile

David Jeison
Departamento de Ingeniería Química
Universidad de La Frontera
Temuco, Chile

Rolando Chamy
Escuela de Ingeniería Bioquímica
Pontificia Universidad Católica de Valparaíso
Valparaíso, Chile

Estela Tapia
Escuela de Ingenieria Bioquimica
Pontificia Universidad Católica de Valparaíso
Valparaíso, Chile

Jorge Rodríguez
Escuela de Ingenieria Bioquimica
Pontificia Universidad Católica de Valparaíso
Valparaíso, Chile

Gonzalo Ruiz-Filippi*
Escuela de Ingeniería Bioquímica
Pontificia Universidad Católica de Valparaíso
General Cruz 34, Valparaíso, Chile
Tel: 56322273819
Fax: 56322273803
E-mail: gonzalo.ruiz@ucv.cl

*Corresponding author

Financial support: Fondecyt 1060220 project from the Chilean Council for Research in Science and Technology (CONICYT). 1060220 and 1090482 projects from Fondecyt and ALEGAS from PUCV, Chile.

Keywords: acidogenic, Gompertz modified, heat treatment, hydrogen, surface response.

Abbreviations:

COD: Chemical Oxygen Demand
GHG: greenhouse gases
VFA: Volatile Fatty Acids
VSS: Volatile  Suspended Solid

Abstract   Full Text

The present research examined the effects of initial substrate concentration and pH on the yield and productivity of hydrogen production by acidogenic fermentation. Assays were carried out at three different initial pH levels (5.5, 6.5 and 7.5) and three initial substrate concentrations (3, 5 and 10 g COD/L). Glucose was used as carbon source and the experiments were conducted at 37°C in batch tests, after a thermal pretreatment to eliminate methanogenic microorganisms. Conversions of glucose into hydrogen were between 16.75 and 27.25% of theoretical maximum, and high values of hydrogen productivity were obtained. An optimum value for the yield of glucose between initial pH of 6.3 and 3.7 g COD/L and productivity of the 5.95 H2/gVSS h and initial pH of 6.7 and 10 g COD/L were obtained from the response surface.

Supported by UNESCO / MIRCEN network