Process Biotechnology
 

Biotechnology Industry

Electronic Journal of Biotechnology ISSN: 0717-3458 Vol. 13 No. 3, Issue of May 15, 2010
© 2010 by Pontificia Universidad Católica de Valparaíso -- Chile Received July 2, 2009 / Accepted November 10, 2009
DOI: 10.2225/vol13-issue3-fulltext-3
RESEARCH ARTICLE

Sugar cane bagasse as feedstock for second generation ethanol production. Part I: Diluted acid pretreatment optimization

Gabriel J. Vargas Betancur
Laboratórios de Desenvolvimento de Bioprocessos
Departamento de Engenharia Bioquímica
Escola de Química, Centro de Tecnologia
Universidade Federal do Rio de Janeiro, Brasil 

Nei Pereira Jr.
Laboratórios de Desenvolvimento de Bioprocessos
Departamento de Engenharia Bioquímica
Escola de Química, Centro de Tecnologia
Universidade Federal do Rio de Janeiro, Brasil
E-mail: nei@eq.ufrj.br

Website:www.ladebio.org.br

*Corresponding author

Financial support: Brazilian Council for Research (CNPq) and Brazilian Oil Company Research Center (PETROBRAS).

Keywords: hemicellulose hydrolysis, severity factor, xylose.

Abstract   Full Text

Tons of sugar cane bagasse are produced in Brazil as waste of the sugar and ethanol industries. This lignocellulosic material is a potential source for second-generation ethanol production. Diluted acid hydrolysis is one of the most efficient pretreatments for hemicellulosic solubilization. The hydrolysate obtained is rich in xylose, which can be converted to ethanol by Pichia stipitis. This work used a statistical approach and the severity factor to investigate the effects of factors associated with the diluted acid hydrolysis process (acid concentration, solid:liquid ratio and time of exposure) on various response variables (xylose concentration, hydrolysis yield, inhibitor concentration and hydrolysate fermentability). The severity factor had a strong influence on the generation of inhibitors. The statistical analysis was useful for determining the effects of the individual factors and their interactions on the response variables. An acid concentration of 1.09% (vv), an S:L ratio of 1:2.8 (g:ml), and an exposure time of 27 min were established and validated as the optimum pretreatment conditions for the generation of hydrolysates with high xylose concentration and low contents of inhibitors. In such conditions, hydrolysate with 50 g/l of xylose was obtained.

Supported by UNESCO / MIRCEN network