Plant Biotechnology
Molecular Biology and Genetics
EJB Electronic Journal of Biotechnology ISSN: 0717-3458 Vol. 3 No. 2, Issue of August 15, 2000.
© 2000 by Universidad Católica de Valparaíso -- Chile Received January 17, 1999 / Accepted March 27, 2000
RESEARCH ARTICLE

Plant genomic instability detected by microsatellite-primers

Xavier, J. Leroy*
Laboratoire de Biotechnologie et d'Amélioration des Plantes
ISAMOR, Technopôle Brest-Iroise
Université de Bretagne Occidentale, 29280 Plouzané, France
E-mail : xavier.leroy@univ-brest.fr

Karine Leon
Aventis Crop Science
France
E-mail : Karine.Leon@aventis.com

Michel Branchard
Laboratoire de Biotechnologie et d'Amélioration des Plantes
ISAMOR, Technopôle Brest-Iroise
Université de Bretagne Occidentale, 29280 Plouzané, France
E-mail : michel.branchard@univ-brest.fr

* Corresponding author

Financial support: Xavier Leroy is supported by a grant of the Brittany Regional Council
Keywords :
Brassica, Cell proliferation, DNA-damage, ISSR, Somaclonal variation.

Abstract Full Text

This report describes a new application of the Inter-Simple Sequence Repeat (ISSR) technique. This technology based on the amplification of regions between microsatellites was applied to different calli from the same cauliflower mother plant. One of the tested ISSR primers, (GATA)4, generated great polymorphism. Twelve different markers were detected on polyacrylamide gels. After sequencing, one sequence showed homology with a predicated A. thaliana gene closely related to genes involved in the regulation of cell proliferation in mammalians. This marker is characterised by three microsatellites and a palindromic sequence. Possible causes of mutations in this marker are discussed and will be investigated. ISSR amplification appears as a reliable method in the determination of genetic instability at early stages in in vitro culture.

Supported by UNESCO / MIRCEN network
Home | Mail to Editor | Search | Archive