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Biological research has experienced a paradigm shift
from in vivo or in vitro experimentation to in silico
experimentation, a development that relies upon
bioinformatics.  The beginning of bioinformatics stems
from the fortuitous timing of the adoption of new DNA
sequencing methods and the availability of mini-and
bench-top computers, which became the tools to store
and to analyze the sequence data.  Another fortunate
coincidence was the popularization of the Internet,
which provided a means to exchange sequence data and
sequence analysis software, and the establishment of the
Human Genome Project, which stimulated the need for
sophisticated data management and analysis tools.
Market pull has rapidly stimulated bioinformatics
commercialization as pharmaceutical companies
discovered a potential means to cure their innovation
deficit.  One of the early models for commercializing
bioinformatics was simply to sell access to databases of
human nucleotide sequences.  This strategy is heading
toward obsolescence as the public consortium nears its
goal of sequencing the human genome.   The key to
future commercialization of sequence data will be to

develop informatics technology that transforms this
data into information that is useful for diagnosis and
therapy.  A competitive transformation of sequence data
into information will require improvements in data
integration and data mining.

The modern biotechnology industry began in the late 1970s
and early 1980s.  At this time, the industry relied upon the
early technology of molecular biology, which enabled the
cloning and isolation of genes. These isolated genes
provided a way to mass-produce the gene-encoded proteins,
which were typically produced in small amounts by normal
tissues.  Many of these efforts were motivated by a known
or likely utility of the proteins for therapy.

In the early 1990s, the first wave products of modern
biotechnology were described as natural proteins and
monoclonal antibodies to natural proteins (Eisner, 1991).
Commentators speculated that second wave products would
include nucleic acid molecules, carbohydrates, protein-
based synthetic molecules, and modified cells for gene
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therapy (Eisner, 1991; Hamilton, 1992).  The impending
major revolution driven by genomics and bioinformatics
was still unseen.

“Genomics” and “bioinformatics” are terms that are not
typically included in current dictionaries.  Thomas
Roderick coined the word “genomics” in 1986 to describe
the discipline of mapping, sequencing, and analyzing
genomes (Hieter and Boguski, 1997).  Not incidentally,
Roderick also wanted to provide a name for the new journal
Genomics.  Even today, the meaning of genomics is not
very clear, but there is agreement that the term generally
refers to the systematic use of genome information, in
conjunction with new experimental data, to answer
biological, medical, or industrial questions (Jordan, 1999).

The field of genomics relies upon bioinformatics, which is
the management and analysis of biological information
stored in databases (Durso, 1997).  Bioinformatics
developed after automated protein and DNA sequencing
technologies were introduced around the mid-1970s, and
after researchers started to use computers as central
sequence repositories that were accessible remotely, a
development that occurred in the mid- to late 1980s
(Persidis, 1999).  In the early 1990s, genomics was
transformed from an academic undertaking to a significant
commercial endeavor, a course followed by bioinformatics
a few years later (Gershon, 1997).

The commercial value of bioinformatics continues to
increase.  In 1998, the bioinformatics market was worth an
estimated US $290 million, and the market may surpass the
$2 billion mark by 2005 (“Bioinformatics emerges”, 1999;
“Oscar Gruss”, 2000).  During March 2000, a rush to invest
in bioinformatics-based companies was derailed by a plea
from President Bill Clinton and UK Prime Minister Tony
Blair for free access to human genome information, which
the press misinterpreted as an intent to ban patents on
human genes (Lewis, 2000; Licking et al. 2000; Rosenberg,
2000; Wadman, 2000).  Nevertheless, interest in
bioinformatics began to recover by the end of the month.
This enduring attraction is due, at least in part, to the belief
that bioinformatics can profoundly alter the way that drugs
are developed (O’Brien, 2000).

The word “bioinformatics” is derived by combining biology
and informatics.  The linchpin of bioinformatics is that
biological polymers, such as nucleic acid molecules and
proteins, can be transformed into sequences of digital
symbols.  Moreover, only a limited alphabet is required to
represent the nucleotide and amino acid monomers.  It is
the digital nature of this data that differentiates genetic data
from many other types of biological data, and has allowed
bioinformatics to flourish (Baldi and Brunak, 1998).
Another key point is that the use of sequence data relies
upon an underlying reductionist approach: sequence implies
structure implies function (Murray-Rust, 1994).
Consequently, sequence data can be treated as context-free,

because a prediction of the biological significance of a
sequence can often be understood in isolation.

The performance of bioinformatics relies upon
developments in computer hardware and software.
However, it is the excessive amount of sequence data that
has driven the development of bioinformatics, a
circumstance that can be traced to the establishment of the
Human Genome Project.

Key factors for the development of bioinformatics

Circumstance of Excessive Data

(a) Human genome project

“The Human Genome Project has been a
technology-driven quest.” Dr. Michael W.
Hunkapiller, senior vice president of Perkin-Elmer
(“Perkin-Elmer”, 1998).

The Human Genome Project was conceived in the mid-
1980s, and was widely discussed in the press and scientific
community through the end of the 1980s (National Human
Genome Research Institute, 1999).  In the United States, the
Human Genome Project officially started on October 1,
1990, as a 15-year program to map and sequence the
complete set of human chromosomes, as well as those of
several model organisms (Venter et al. 1998).  The goal of
sequencing an estimated three billion base pairs of the
human genome was ambitious, considering that few
laboratories in 1990 had sequenced even 100,000
nucleotides (National Human Genome Research Institute,
1998).  Sequencing of the human genome began in earnest
in 1996.

The U. S. Department of Energy and the National Institutes
of Health were the main research agencies responsible for
developing and planning the Human Genome Project
(National Human Genome Research Institute, 1999).  Other
centers around the world soon joined in the project,
including the Wellcome Trust (United Kingdom) (Cook-
Deegan, 1994).  By 1993, the Human Genome Project had
become an established international effort, which included
nine countries and the European Community (Cook-
Deegan, 1994).  Although any genome project center could
determine a preferred method for generating sequencing
data, all centers had to follow certain rules (Pennisi, 1998).
The most significant rule was that the nucleotide sequences
must contain no more than one error in every 10,000 bases,
which represents an accuracy of 99.99%.

The strategy of this international project was to make a
series of maps of each human chromosome at increasingly
finer resolutions (DOE Human Genome Program, 1992).
According to this approach, chromosomes were divided
into smaller fragments that could be cloned, and then,
fragments were arranged to correspond to their locations on
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a chromosome.  After mapping, each of the ordered
fragments would be sequenced.

A number of major technical innovations were considered
essential for the success of the Human Genome Project
(Venter et al. 1998).  The mapping and sequencing
components of the Human Genome Project relied upon
advances in technologies for constructing recombinant
DNA libraries.  The introduction of yeast artificial
chromosomes greatly facilitated the construction of
complete physical maps of complex genomes (Touchman
and Green, 1998).  The development of bacterial artificial
chromosomes also provided a means to clone large
fragments (about 150,000 base pairs).  Complementary
DNA (cDNA) library construction was aided by refined
preparations of enzymes, which have allowed the
generation of longer and more authentic primary cDNA
(Touchman and Green, 1998).

However, the polymerase chain reaction, due to its
sensitivity, specificity, and potential for automation, is
considered the front-line analytical method for analyzing
genomic DNA samples and constructing genetic maps
(Touchman and Green, 1998).  This method was invented
in 1985, after initial discussions about the Human Genome
Project.  Over the years, incremental improvements in basic
PCR technology have enhanced the power and practice of
the technique.

Between 1970 and 1990, the number of nucleotides
sequenced per year per investigator increased dramatically,
reflecting the significant advancements in DNA sequencing
technology (Cantor and Smith, 1999).  Since the
introduction of the first-semi-automated sequencer in 1987,
and the development of Taq cycle sequencing in 1990,
fluorescent labeling of DNA fragments generated by the
Sanger dideoxy chain termination method has been the
foundation of large-scale sequencing projects (Venter et al.
1998).

Technologies for capturing sequence information have also
advanced.  In the early 1980s, researchers could use
digitizer pens to manually read DNA sequences from gels
(Lewis, 1996).  Then came image-capture devices, which
were cameras that digitized the information on gels (Lewis,
1996).  In 1987, Steven Krawetz (Center for Molecular
Medicine and Genetics at Wayne State University in
Detroit) helped to develop the first DNA sequencing
software for automated film readers.

EST approach: focus on active sequences

The prevailing view is that the bulk of useful information
about the human genome can be gained from the regions of
DNA that encode proteins.  Analysis of these nucleotide
sequences allows elucidation of the corresponding amino
acid sequences.  Although this seems simple, a significant
problem is that gene density in the human genome is
exceptionally low,  and only   about   3%   of   the   genome

encodes proteins (Slater, 1998).

In the early 1990s, J. Craig Venter, a researcher at the
National Institutes of Health, and his colleagues devised a
new way to find genes (Wickelgren, 1999).  Rather than
taking the Human Genome Project strategy of sequencing
chromosomal DNA one base at a time, Venter’s group
isolated messenger RNA molecules, copied these RNA
molecules into DNA molecules, and then sequenced a part
of the DNA molecules to create expressed sequence tags, or
“ESTs.”  These ESTs could be used as handles to isolate
the entire gene.  Venter’s method, therefore, focused on the
“active” portion of the genome, which was producing
messenger RNA for protein synthesis.

The EST approach has generated enormous databases of
nucleotide sequences, and facilitated the construction of a
preliminary transcript map of the human genome
(Touchman and Green, 1998).  The development of the
EST technique is considered to have demonstrated the
feasibility of high-throughput gene discovery, as well as
provided a key impetus for the growth of the genomics
industry (Fields, 1996).

As a result of the Human Genome Project and the parallel
EST-based sequencing approaches, sequence data began to
appear at an extraordinary rate.  By mid-1999, the amount
of GenBank nucleotide sequence data was doubling every
14 months, and a genetics laboratory could easily produce
100 gigabytes of data each day (Cook, 1999; “Drowning in
data”, 1999).  As one commentator observed, “Biology has
belatedly realised that it is, itself, an information
technology” (“Drowning in data”, 1999).

Computational Biology and Computer Technology

“We are now witnessing two technology-driven
revolutions that will transform our world within
the next 10 to 20 years.  The explosive growth in
biotechnology is being paralleled almost precisely
by the expansion of information technology.
These areas come together in the concept of
bioinformatics.”  (Murray-Rust, 1994).

Bioinformatics has its roots in computational biology, a
field that has been driven during the last 17 years or so
largely by the vast amounts of nucleotide sequence data
generated and deposited in the public-domain databases
(Durso, 1997).   At present, computational-based analyses,
storage, and retrieval of mapping and sequencing data are
considered among the most critical and rapidly evolving
genomic-based technologies (Touchman and Green, 1998).

The connection between molecular biology and computer
science can be viewed as the outcome of coincidental
timing (Smith, 1990).  Departmental mini- and bench-top
computers began to appear in laboratories at the same time
that researchers were adopting techniques of cloning and
nucleic acid sequencing.  Thus, the tools needed to store,
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search, and analyze the new sequence data developed
alongside the tools necessary to generate the data.

After the formation of DNA and protein databases, software
slowly became available to search sequence databases
(Gardner, 1999).  The first methods were simple and
involved hunting for keyword matches and short sequence
words.  These approaches were followed by sophisticated
pattern matching and alignment-based software.  Suites of
analysis algorithms were written by leading academic
researchers at Stanford, CA, Cambridge, UK, and Madison,
WI for in-house projects, and then became more widely
available (Gardner, 1999).   For example, in the late 1980s,
the PC/GENE software package of IntelliGenetics
(Mountain View, CA) made its appearance, enabling the
researcher to translate a nucleotide sequence into an amino
acid sequence, and to obtain basic protein structure
predictions (Persidis, 1999).  Today, genomics researchers
rely upon software for a variety of activities, such as
reading nucleotide sequences from electrophoresis gels,
predicting encoded protein sequences, identifying primers
for gene amplification, sequence comparison or alignment,
database searching, analyzing evolutionary relatedness,
pattern recognition, and structure prediction (Lewis, 1996;
Smith, 1999).

Although conventional algorithms have been useful for
analyzing biological information, these approaches are
inadequate for many sequence analysis problems (Baldi and
Brunak, 1998; Šali, 1999).  This is due to the inherent
complexity of biological systems and a lack of a
comprehensive theory about molecular organization (Baldi
and Brunak, 1998).   Competent comparison of sequence
patterns across species must take into account that
biological sequences are inherently noisy, which reflects
variability arising from random events amplified by
evolution (Baldi and Brunak, 1998).

Machine learning approaches, such as neural networks,
hidden Markov models, and belief networks, are suited for
characterizing large amounts of data and noisy patterns in
the absence of general theories (Baldi and Brunak, 1998;
Cantor and Smith, 1999).  The idea behind these
approaches is to learn the theory automatically from the
data through a process of inference, model fitting, or
learning from examples (Baldi and Brunak, 1998; Cantor
and Smith, 1999).

The advancement of bioinformatics generally, and the
machine-learning expansion of bioinformatics in particular,
has benefited greatly from progress in computer speed.
Coincidentally, computer speed and the amount of
sequence data have been growing at roughly the same rate
since the late 1980s, apparently doubling about every 15 to
18 months by 1998 (Baldi and Brunak, 1998).  Some claim
that it is becoming increasingly difficult to separate
advances in biotechnology from advances in high-
performance computing (Van Brunt, 1999).

Access to sequence data is critical, and much of the new
sequence data are distributed over the Internet.  The
Internet also provides a means to distribute software, and
enables researchers to perform sophisticated analyses on
remote servers. It was fortuitous, but fortunate, that the
Human Genome Project and a major growth increase in
Internet occurred in parallel (Touchman and Green, 1998).

Until the late 1980s, there were mainly three ways of
accessing databases over Internet: electronic mail servers,
File Transfer Protocol, and TELNET servers (Appel, 1997).
Electronic mail servers allowed researchers to retrieve
individual entries from databases by sending an electronic
mail query to the mail server’s Internet address.  The
researcher’s query was then processed by the server, and
the result was sent back to the sender’s mailbox.  Due to
requirements of precise syntax, formulating the query was
cumbersome and subject to frequent errors (Appel, 1997).
Moreover, the process was slow by Internet standards,
taking from minutes to hours.  With File Transfer Protocol,
entire databases could be downloaded and searched locally
(Appel, 1997).  A drawback, here, was that a researcher
would have to download the database after each update.
TELNET allowed a user to remotely log onto a computer
and access its facilities.  This method was useful for
occasional queries, but required extensive management of
user identifications, and often overloaded the remote
computer’s processing power (Appel, 1997).

In the early 1990’s, the introduction of GOPHER and
WAIS (Wide Area Information Server) increased the
selection of database accession schemes.  However, both
protocols have been widely replaced by the World Wide
Web, which Tim Berners-Lee (CERN; Geneva,
Switzerland) invented in 1990 (Berners-Lee, 1999).
Shortly after the National Center for Supercomputer
Applications (Urbana-Champaign, IL) released the user-
friendly Mosaic™ browser, it became clear that the World
Wide Web would greatly enhance the power of cross-
references by providing active integration of databases over
Internet, thus eliminating the need to download and
maintain local copies of databases (Murray-Rust, 1994;
Appel, 1997).  Thus, a researcher could easily navigate
across database entries through active hypertext cross-
references with the guarantee that each retrieved piece of
information was up to date.  ExPASy (Expert Protein
Analysis System), the first molecular biology Web server,
was set up at Geneva University Hospital and University of
Geneva in 1993 (Appel, 1997).  During the following
months, most major genome databases were made
accessible on World Wide Web servers throughout the
world.  Currently, there are at least 400 Internet-accessible
databases of biological data (Discala et al. 1999).

Commercialization of bioinformatics

 “Private information is practically the source of
every large modern fortune.” Sir Robert Chiltern,
An Ideal Husband (Wilde, 1994).
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“This is a quick and dirty grab – like the wild
West, where everyone was trying to stake a
claim.”  (Fisher, 1994).

The Human Genome Project relies upon international
cooperation and the sharing of knowledge.  In this way, the
rapidly growing data set of human nucleotide sequences
reflects a macro-level of innovation at the international
level.  However, the transformation of that data into
information is taking place at the national level, where
governments are supporting commercialization of genomics
and bioinformatics, and at the company level.

Innovation at the Macro-level

In Japan, for example, the government introduced a new
program to launch 1,000 new biotechnology-related
companies within the next decade (Saegusa, 1999a).  This
announcement represented a policy shift from academic
research to commerce, and was consistent with the
government’s program to produce a 25-fold expansion in
Japan’s biotechnology market by 2010  (“Japan aims”,
1999; Saegusa, 1999a).  The country’s commitment to the
effort is clearly reflected in the 2000 budget, in which the
Japanese government allocated US $3.4 billion for
biotechnology among the five science-related ministries;
US $561 million is set aside for genomics research alone
(Triendl, 2000).

The first phase of the government program, which is
backed by the Ministry of International Trade and Industry,
aims to increase Japan’s competitiveness in the genomics
field and to strengthen Japan’s intellectual property position
(Saegusa, 1999a).  One specific objective is to create vast
databases of genomic information to provide data to
Japanese research institutions and biotechnology companies
for development of products and technologies (Saegusa,
1999a).  According to the Ministry of International Trade
and Industry, another objective is to sequence 30,000
cDNA clones by 2001 (Saegusa, 1999b).  This project is led
by Tokyo University’s Institute of Medical Sciences and
Japanese companies.

Meanwhile, the Genome Sciences Centre (Wako City) will
take the central role in human and animal research for the
genomic databases (Saegusa, 1999a).  Genome Sciences
Centre was set up last year by the Institute of Physical and
Chemical Research, which has developed a high-speed
DNA sequencer.   It is anticipated that the new government
program will allow biotechnology companies to combine
forces with electronics and multimedia industries (Saegusa,
1999a).

The products of the new bioinformatics initiative are
already apparent.  In July 1999, Helix Research Institute
Inc. (Kisarazu-shi, Chiba), a genomics company funded by
the government and industry, filed patent applications for
more than 6,000 full-length human cDNA clones  (Saegusa,
1999c). Over the next several years, Helix hopes to produce

an additional 20,000 full-length human cDNA clones in
collaboration with other companies and research institutes,
possibly through a consortium (Saegusa, 1999c).

Helix, which was established in 1996 as a joint venture
between the Ministry of International Trade and Industry
and ten private companies, consists of three research
departments (Noguchi, 1996; Saegusa 1999c).  The First
Research Department combines established methods for
identifying gene function with new core technologies,
including the use of electro-optical devices for
measurement of expression profiles, and high-throughput
cloning of full-length DNA.  The Second Research
Department is responsible for bioinformatics and intends to
have a computer system equipped with high-speed parallel
processors, database servers, and graphics workstations.
This department will also develop new software for the
analysis of sequence data.  The Third Research Department
aims to develop methods to evaluate gene function and will
analyze biological mechanisms through expression profiles.
Thus, Helix includes in-house capabilities for gene
sequencing, gene analysis, as well as hardware and
software for bioinformatics.

China has also identified genomics as a major funding
priority for biological and biomedical research (Hui, 2000;
Triendl, 2000).  New genome centers in Shanghai and
Bejiing receive funding from multiple sources, and are
staffed with scientists from local hospitals and various
institutes of the Chinese Academy of Sciences (Bejiing).

The Canadian government is implementing a national
genomics initiative with the objective of propelling the
country into the role of a major player in genomics
(“Genome Canada”, 1999; Hoyle, 1999).  Canadian
genomics researchers in Canada now have access to the
Canadian Bioinformatics Resource (Halifax, Nova Soctia),
the world’s first gigabyte network (Hoyle, 1999).  The
Canadian Bioinformatics Resource utilizes the national
high speed CA*net II internet and includes over 60 high
performance servers and workstations at six National
Research Council of Canada centers nation wide (Hoyle,
1999).  The plan is to replace CA*net II links of 45
megabytes per second with CA*net III links of 300
gigabytes per second (Hoyle, 1999).  When the system is
fully implemented, Canadian Bioinformatics Resource
should allow users to access and decipher raw data from
over 100 databases in real time (Hoyle, 1999).   Once again,
bioinformatics and Internet access are developing in
parallel.

Genome Canada’s directive is to coordinate Canadian
genomics programs into a network of centers to provide the
platform technologies and knowledge required for further
research (“Genome Canada”, 1999; Hoyle, 1999).  The
network’s infrastructure is based on a hub and spoke model
with five centers: Halifax, Montreal, Toronto, Saskatoon,
and Vancouver (“Genome Canada”, 1999; Hoyle, 1999).
The Canadian model of networked, geographically distinct
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centers builds on the successes of the U.K., European, and
Swiss bioinformatics efforts (Hoyle, 1999).

The Canadian genomics program centers will probably spur
the creation of biotechnology clusters. The clustering
phenomenon in the biotechnology industry is well-
established, and is explicitly supported by certain
governments (Sainsbury et al. 1999).  The United States,
often held as a model for biotechnology cluster
development, contains a number of genomics clusters, such
as the genomics cluster in Cambridge, Massachusetts.  The
magnet for activity in this particular area is the Whitehead
Institute/Massachusetts Institute of Technology Center for
Genome Research, which is one of the leaders in the
Human Genome Project (Blanton, 1999).  Not
coincidentally, Cambridge also provides universities,
entrepreneurs, medical research schools, and supporting
biotech companies, as well as the attention of industry
analysts (Blanton, 1999).

Innovation at the Micro-level

In addition to the phenomenon of cluster development, the
U.S. bioinformatics industry is characterized by a dominant
micro-level of innovation, as opposed to the macro-level
innovation illustrated above.  Yet Harry Mangalam, CEO of
tacg Informatics (Irvine, CA), observed that, “what has
made US biotech and bioinformatics so vibrant was the
ability of small companies to start up very easily to exploit
an idea, and then, either grow or go bust based on their
potential” (Hoyle, 1999).  This validity of this comment is
best illustrated by Human Genome Sciences, Inc. (HGS;
Rockville, MD), the first company to commercialize
genomics.

(a) Human Genome Sciences

In 1992, venture capitalist Wallace Steinberg gave US $70
million, to be paid over ten years, to J. Craig Venter with
the objective of creating The Institute of Genomic Research
(TIGR; Gaithersberg, MD), a nonprofit organization, which
would conduct basic genetic research (Marshall, 1997;
Wickelgren, 1999).  At the same time, Steinberg asked
William A. Haseltine to leave the Dana-Farber Cancer
Institute and Harvard Medical School (Boston) to become
the chairman and CEO of HGS. (Pickering, 1999c;
Wickelgren, 1999). Haseltine was a cancer researcher and
entrepreneur, who had worked on the Human Genome
Project (“Human Genome Sciences”, 1999).

Venter and Haseltine soon formed an alliance with
SmithKline Beecham, which would invest an initial US
$125 million (Marshall, 1997).  According to the terms of
the collaboration, HGS would perform some research,
develop medical products, and manage finances (Marshall,
1997).  HGS would also transfer US $85 million from
SmithKline in quarterly payments to TIGR.  In exchange,
HGS would have the right to preview TIGR’s findings and
HGS would have commercial rights to all discoveries

(Marshall, 1997).  However, HGS grew increasingly
concerned about TIGR’s plans to publish sequence data,
and set up a duplicate intramural human gene sequencing
program by 1993 (Marshall, 1997).

During 1995, HGS and TIGR signed a deal with Takeda
Chemical Industries, Ltd. (Chuo-ku, Osaka, Japan) to
develop and commercialize human genome products in
Japan (“Human Genome Sciences”, 1999).  The number of
alliances increased during the following year when HGS
and SmithKline enlarged the scope of their agreement to
include Schering Plough Corp. (Madison, NJ), Synthnélabo
(now: Sanofi-Synthélabo; Paris, France), and Merck KGaA
(Darmstadt, Germany) (“Enough to go around”, 1996).
Despite these successes, the business relationship between
HGS and TIGR grew increasingly distant, and in June
1997, HGS and TIGR announced the end of their
partnership (Wickelgren, 1999).

In the early years of operation, HGS used automatic gene
sequencing technology to compile one of the largest
databases of human and microbial genes in the world
(“Human Genome Sciences”, 1999).  Today, HGS lists
technologies that include gene isolation, sequencing,
bioinformatics, molecular biology, protein chemistry, cell
biology, pharmacology, high-throughput biological
screening, drug formulation, and manufacturing
(“Pipeline”, 2000).

Although an early strategy of HGS was to collect royalties
from companies that would develop products using HGS’s
database, HGS has taken the position that their goal is to
discover, develop, manufacture, and market new gene- and
protein-based drugs (“Corporate profile”, 1999; “Human
Genome Sciences”, 1999).  That is, HGS intends to support
activities encompassing the discovery of new human genes
and extending through human trials.  In December 1997,
HGS took a step to effect their long-term goals by entering
into a lease with the Maryland Economic Development
Corporation for a manufacturing and process development
plant to mass produce its new first drugs (“Manufacturing”,
2000; Wickelgren, 1999).

In sum, bioinformatics is one HGS’s key technology
platforms, and it is a major component of strategic
alliances.   HGS is considered to be the world’s first fully
integrated bioinformatics company, where sequence,
biological assay, or expression data are captured directly
from production machines, and manipulated electronically
(Pickering, 1999c).  By October 1999, HGS had produced
three candidates in Phase II trials, backing its long-term
goal of moving from a genome sequencing company to a
pharmaceutical company (“HGS touts”, 1999).

An important aspect of HGS strategy is the acquisition of
proprietary rights to new genes and proteins.  As of
February 2000, HGS had filed patent applications covering
more than 7,500 newly discovered human genes (“Patents”,
2000).   According  to  a  recent  estimate,  the  HGS  patent
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 estate may be worth in the billions (Pickering, 1999c).

The HGS patent portfolio is not appreciated by all, and
highlights the continuing tension in the field between
business and academic views of sequence information.  In
1994, HGS and SmithKline made their database available
to university researchers, in exchange for certain patent
rights (“Enough to go around”, 1996).  The terms of access
excluded pharmaceutical and other industry-affiliated
scientists, which many companies did not welcome (Hoke,
1994).  Merck and Co., Inc. (Whitehouse Station, NJ)
reacted by sponsoring a project to deposit sequence data
into a publicly accessible database (Hoke, 1994).  The
competing project, conducted at Washington University
School of Medicine (St. Louis, MO), had the aim of
sequencing about 200,000 cDNA segments in about 18
months, and depositing the results immediately into
GenBank, a publicly accessible database managed by the
National Center for Biotechnology Information at the
National Library of Medicine (Bethesda, MD) (Hoke,
1994).  This duplicative effort created a more data to fuel
the bioinformatics industry.

Company Strategies

Before looking at bioinformatics-based strategies, some
redefinition is in order.  Reports on the genomics industry
often refer to “bioinformatics technology”. However,
bioinformatics is a discipline that encompasses the
management and analysis of digitalized biological
information.  Bioinformatics is not one type of technology.
Rather, bioinformatics includes any number of
technologies. When considering commercialization
strategies, therefore, it is more useful to identify
configurations of bioinformatics technologies that comprise
a company’s production system.

(a)Transformation of sequence data to gene
information

For example, a company could use the following group of
technologies, which provide a basic bioinformatics
configuration: analysis of raw nucleotide sequence data to
assemble small sets of sequences into large contiguous
nucleotide sequences, structural analysis of the large
sequences to identify the presence of a gene, analysis of the
putative amino acid sequence of the gene to provide protein
structure predictions, and analysis of the amino acid
sequence and predicted protein structure to provide protein
function predications.  The net result of this set of unit
processes is the productive transformation of raw sequence
data to a gene sequence combined with annotation on
protein predictions.

As HGS illustrates, one way that companies have used such
a “basic bioinformatics configuration” was to sell data, in
the form of complete genes or gene fragments, which others
could use to identify potential drugs or drug targets.  Incyte
Pharmaceuticals, Inc. (Palo Alto, CA) was another of the

early biotechnology companies to engage in high-
throughput computer-aided nucleotide sequencing to
identify new genes and their corresponding proteins with
potential therapeutic applications (“The history of Incyte”,
2000).   The company’s basic approach was to compare
partial sequences with known sequences to predict
biological function, and to offer companies a non-exclusive
access to its genomic databases (“Corporate backgrounder”,
2000; “The history of Incyte”, 2000).

Often, deals based upon the selling of nucleotide sequence
information are structured like leases, in which the
collaborator uses the technology and services for about
three to five years in exchange for subscription fees and
payments for services  (Pickering, 1998).  The most
common element of such an arrangement is that equipment,
software, and data are generally reclaimed by the owner
upon termination of the agreement (Pickering, 1998).
Bioinformatics services also usually came with milestones
and royalties attached to projects that made it into actual
drug programs (Longman, 1999).

This bioinformatics service model of the mid-1990s was
attractive to investors, who viewed it as an alternative to the
high cost and high risk of individual therapeutic programs
(Longman, 1999).  However, there are drawbacks to
marketing only such services.  Due to rapid innovation and
rapid obsolescence, companies that rely solely upon selling
nucleotide information must consistently upgrade their
technologies to stay competitive (Ratner, 1999).  In fact, the
problems facing such companies more closely resemble
those of the high-technology industry, because the end
products of a bioinformatics service company are tools and
information, and product development cycles are so
compressed (Ratner, 1999).

There are additional drawbacks to the basic bioinformatics
configuration.  GenBank’s collection of human nucleotide
sequences is currently experiencing an exponential growth.
The sale of new nucleotide sequences is inherently limited
by the number of human genes, and this natural limit
constrains the time for the viability of the basic
bioinformatics service model.

Considering the advancements in sequencing technology
and the increasing numbers of contributions to public
databases, it is clear that time is running out for the early
strategy of selling sequence information.  These sequences
are generated by the publicly-financed consortium, which is
financed principally by the NIH and the Wellcome Trust of
London, and the duplicative efforts in industry.  A major
factor in the private sector is Celera Genomics Group
(Rockville, MD).  In 1998, instrument maker Perkin-Elmer
(now, PE Corporation; Norwalk, CT), and J. Craig Venter
of TIGR formed Celera to combine Perkin-Elmer’s DNA
analysis technology with TIGR’s sequencing strategies
(“Perkin-Elmer”, 1998; Wade, 1998).  Venter, Celera’s
head, had the goal to finish a complete sequence of a
human  genome  within  three  years,  a  boast   based  upon
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Celera’s new sequencing strategy (Wade, 1998).

In contrast to the methodical, piecemeal approach of the
Human Genome Project, Venter devised the “whole-
genome shotgun strategy,” which involves randomly
breaking DNA into segments of various sizes and cloning
the fragments into vectors (Marshall and Pennisi, 1998;
Smaglik, 1998).  Since the fragments are randomly cleaved
from the genome, they tend to overlap, and a genome
assembly program is used to fit contiguous pieces by
matching overlapping ends (Wade, 1999).  At a certain
point, however, the assembly program cannot
unambiguously match new ends, because the human
genome contains numerous regions of repetitive DNA.  As
a result, it is difficult to determine how many repeated units
reside within gaps between neighboring contiguous pieces.
To bridge the gaps, Celera generates pieces of very large
DNA fragments of known length with sequenced ends
(Wade, 1999).  The assembly program positions
neighboring contiguous pieces by looking for a bridging
link that has one end matching a DNA sequence in one
contiguous fragment and the other end matching DNA in
the other (Wade, 1999).  A sufficient number of links is
generated to ensure that each neighboring pair of
contiguous fragments is straddled on average by at least
two bridging links.  Once the size of the gap is established,
the assembly program can thread its way through the
repetitive DNA between the two contiguous fragments
(Wade, 1999).

In collaboration with Compaq Computer Corporation
(Houston, Texas), Celera has developed what company
officials refer to as the world’s second largest
supercomputer facility (Fickel, 2000).  Celera has already
installed more than 200 Compaq AlphaServer ES40
systems running 500MHz Alpha processors, 11 GS140
servers, and 50 terabytes of StorageWorks storage; this
system runs on a network that supports throughput of
500GB per second (Fickel, 2000).  The company has also
leased 300 3700 DNA sequencers from PE Biosystems, and
is reportedly working 24 hours a day and seven days a week
(Fickel, 2000; Wade, 1999).

The effect of this effort was obvious in October 1999, when
Celera announced that it had filed patent applications on
6,500 ESTs within one month, and in February 2000, when
Celera announced that it had filed patent applications
covering 10,000 genes (Gillis, 1999; “Company Says”,
2000).  Celera expects to have a rough draft of the entire
human genome by midsummer of this year, a prediction
that Celera backed up with the announcement that the
company had completed the sequencing phase of one
person’s genome (“Celera Genomics”, 2000; Licking et al.
2000).

Not to be outdone, the public consortium followed Celera’s
October announcement by publicizing the sequencing of its

one-billionth nucleotide, and the complete sequencing of
human chromosome 22 (Butler, 1999; Dickson and
Macilwain, 1999).  In April 2000, the U.S. Department of
Energy’s Joint Genome Institute (Walnut Creek, CA)
announced the decoding of human chromosomes 5, 16, and
19 in draft form (Osborne, 2000).  More than ever, it is
clear that the endgame is in sight.  However, the collection
and analysis of sequences to determine structure and predict
function is just one part of bioinformatics.  As one observer
noted, “What started as a grab for gene sequences, of
course, has turned into a race to find out what the genes do
and which are the best targets for new drugs” (“Data
mining”, 1999).

One sign of a maturing core technology is that the
transformed products of that technology become relatively
undifferentiated.  In the case of the bioinformatics service
model, the ready availability of sequences in the public
domain has accelerated this maturation process.  Recently,
Hyseq Inc. (Sunnyvale, CA) created a subsidiary called
“GeneSolutions Inc.,” to sell Hyseq’s genetic information
over the Web (Henig, 1999).  Lewis Gruber, Hyseq’s CEO,
has explained that the new company will allow researchers
to purchase genes on a point-and-click basis (Regalado,
2000).  GeneSolutions will charge from 50 cents for small
bits of genetic data to US $10,000 for exclusive one-year
rights to patented genes (Henig, 1999).  The price of
nucleotide sequence information appears to be reduced to
clear.

Pickering (1999a) observed that, in 1998, the
bioinformatics industry passed beyond the proof-of-concept
stage into a more mature business, which provides valuable
products and services.  However, the basic bioinformatics
service model has reached its advanced years.  As William
Haseltine recently opined, “the bloom is already off the
rose for database companies,” (BioWorld®, 1999).

(b) The Drug Target as a Commodity

In light of the maturing bioinformatics service model, there
has been an overhaul of the platform strategy of the basic
bioinformatics service business.  Figure 1 illustrates various
tactics that companies use to commercialize bioinformatics.
One approach is to modify the basic bioinformatics
configuration to enhance the value-added transformation of
sequence data by creating high-value intellectual property
like validated targets (Longman, 1999).  This strategy is
illustrated by Millennium Pharmaceuticals Inc. (Cambridge,
MA), which struck a US $465 million deal to provide Bayer
AG (Leverskusen, Germany) with 225 drug targets relevant
to cardiovascular disease, cancer, osteoporosis, pain, liver
fibrosis, hematology and viral infections (BioWorld®,
1999).  Despite this lucrative arrangement, some believe
that validated drug targeted discoverers have also entered
into a race against commoditization (Longman, 1999).
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Bioinformatics Configurations

Sequences Gene + Annotation on Protein Function

Sequences Drug Target

Sequences Gene + Information on Gene Expression

Sequences Gene Variants Related to Human Disease

Figure 1. The figure illustrates various strategies that companies use to commercialize bioinformatics.

(c) Gene Expression Information: Value added to
Gene Sequence

The availability of massive amounts of nucleotide
sequences has motivated the development of various ways
to examine this data, as reflected in the creation of
functional genomics and pharmacogenomics technologies
in the mid-1990s (Boguski, 1999).   A systematic
extrapolation from gene sequence to function is considered
as the major challenge facing industry and academia
(Rastan and Beeley, 1997).  As a result of this shift in
emphasis from sequencing and mapping genes to gene
function, genome analysis is now considered to be divided
into “structural genomics” and “functional genomics”
(Hieter and Boguski, 1997).  “Structural genomics,” a term
coined in 1997, typically refers to the initial phase of
genome analysis with the endpoint of constructing high-
resolution genetic, physical, and transcript maps of an
organism. (Hieter and Boguski, 1997; Gaasterland, 1998).

In contrast, functional genomics encompasses the
development and application of genome-wide experimental
approaches to assess gene function by using the information
and reagents provided by structural genomics (Hieter and
Boguski, 1997; Strausberg and Austin, 1999).  The field is
characterized by high throughput or large scale
experimental methodologies combined with statistical and
computer analysis of the results (Hieter and Boguski,
1997).  The fundamental strategy in a functional genomics
approach is to expand the scope of investigation from
studying single genes or proteins to studying all genes or
proteins at once in a systematic fashion.  The emphasis is
on gene function as gleamed from gene expression
observations.  Figure 2 presents the details of CuraGen’s
(New Haven, CT) bioinformatics configuration for selling
information that relates to gene expression.  Gene Logic

(Gaithersburg, MD) uses a similar approach to
commercializing bioinformatics.

(d) Transformation of Sequence Data into Information
on Human Gene Variation

“Pharmacogenomics” generally refers to a particular
application of genomic technologies in drug discovery and
development (Jain, 1999).  Proponents of
pharmacogenomics argue that knowledge about genetic
differences, or polymorphisms, that contribute to variability
in drug responses can be used to accelerate drug
development and improve both the safety and efficacy of
some currently available drugs (Schachter, 1998).  This
stand is based on the recognition that inherited differences
in the metabolism and disposition of drugs, and genetic
polymorphisms in the targets of drug therapy (such as
receptors) can have an even greater influence on the
efficacy and toxicity of medications than factors such as
severity of disease being treated, drug interactions, patient’s
age, nutritional status, renal and liver function (Evans and
Relling, 1999).  These polymorphisms can be characterized
as base insertions, deletions, or substitutions (Czarnik,
1998).  Single base differences between copies of the same
gene are termed single nucleotide polymorphisms
(“SNPs”), and these SNPs are the greatest source of
variability within the population (Czarnik, 1998).

The field of pharmacogenomics has roots in the 1982
founding of the Human Polymorphism Study Center (Paris,
France), which was the first academic institution to propose
the systematic study of polymorphisms (“The SNP
timeline”, 1999).  The Center’s primary objective was to
make an inventory of all possible human polymorphisms
and associate them with diseases.  However, the technology
to support such a project would not appear for more than a
decade
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CuraGen Strategy

Generate sequence databases of

expressed genes

Perform expression analysis of genes

associated with disease or drug response

Determine protein-protein interactions to

identify biological targets

Screen candidate targets against small

molecules to identify drug candidates

Figure 2.  The figure presents details of CuraGen’s (New Haven, CT) bioinformatics configuration for selling information
that relates to gene expression (“Technology,” 1999).

In 1996, feasibility studies indicated that that mapping
SNPs might be feasible and that the resulting data should be
useful (“The SNP timeline”, 1999).  During the following
year, Abbot Laboratories (Abbott Park, IL) contracted with
Genset (Paris, France) to begin a targeted search for 60,000
targeted SNPs that will be potentially useful in
pharmacogenomics.  When Celera formed in 1998, it
included, as part of its business model, the selling of access
to a human SNP database.  In the same year, the National
Institutes of Health began to fund research projects for
searching and mapping 50,000 targeted SNPs and for the
mapping of 50,000 randomly generated SNPs.  The
information will be entered into a public database (“The
SNP timeline”, 1999).

Once again, patents have become  an issue.   In April  1999,
Glaxo Wellcome, SmithKline Beecham, Pfizer,
AstraZeneca, Bayer, Bristol-Meyers Squibb, F. Hoffman-
La Roche, Hoechst Marion Roussel, Novartis, and Searle
pooled their money to form a consortium with the objective
of discovering 300,00 SNPs (Roberts, 1999; Russo and
Smaglik, 1999).  The consortium members will release the
data to the public as a preemptive strike against patenting
the SNPs.

According to simulations reported by Kruglyak (1999), one
SNP per 6,000 base pairs may be needed to detect
association between a marker and disease, which amounts
to 500,000 for whole genome studies.  A later study,
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however, indicates that a SNP map with a density of one
per 10,000 to 30,000 base pairs could be used to identify
areas of DNA thought to be linked to disease (Loder, 1999).
Glaxo Wellcome scientists have already used SNPs to
locate areas of DNA for migraine, type II diabetes, and
psoriasis.  Therefore, researchers showed for the first time
that it is possible to narrow the search for human genes
using small variations in the genome.  It is still uncertain,
however, that SNP mapping can be applied to a wide range
of diseases (Roberts, 2000).

Additional methods of commercializing bioinformatics are
apparent.  For example, certain bioinformatics-based
companies are leveraging their technologies to become
fully integrated drug discovery operations (Frew, 1998;
Madden, 1998; Fisher, 1999; Ratner, 1999).  This approach
was illustrated by the evolution of Human Genome
Sciences.  Other bioinformatics companies are merging
with drug discovery companies, resulting in a substitute
technological approach to drug development.

Companies are also commercializing bioinformatics by
using a hybrid database/application service provider model.
Application service providers, or “ASPs,” can offer
subscribers access to software programs, data storage, and
computing facilities via the Internet.  DoubleTwist.com
(Oakland, CA), for example, provides access to clustering
and alignment tools, as well as access to its own annotated
genomic data.  Similarly, LabOnWeb, a web site operated
by Compugen, Inc. (Tel-Aviv, Israel), allows clients to
analyze sequences using the company’s algorithms and
propriety database.  Both of these ASPs protect transferred
information with encryption (“Data security”, 2000;
“DoubleTwist Security Statement”, 2000).

The pharmaceutical industry and its innovation
deficit

“There’s very often a certain leap of faith,
especially in the pharmaceutical industry, that if
one can construct a database . . . it can be
interrogated in a useful and productive way.”  John
N. Weinstein, senior research investigator in the
Laboratory of Molecular Pharmacology at the
National Cancer Institute  (Durso, 1997).

“An in silico revolution is emerging that will alter
the conduct of early drug development in the
future.” Dale Johnson, Chiron Corporation
(Johnson, 1999).

As discussed above, key factors that led to the development
of bioinformatics included the excessive amounts of data
generated by sequencing efforts, as well advances in
computational molecular biology, computer technologies,
and the Internet.  Another key factor was the availability of
a market for bioinformatics information – the traditional

pharmaceutical industry. As Gardner (1999) observed, “in
an industry worth comfortably over $150 billion a year, any
innovations that promise not only to find a new drug
candidate more rapidly, but to revolutionise the way a
pharmaceutical company fills its product pipeline for years
to come, are compelling” (paragraph 2).

In the mid-1990s, pharmaceutical companies were primed
for the new approaches of bioinformatics due to a lack of
innovative new products in the traditional drug pipeline
(Gershon, 1995; Gardner and Flores, 1999).  This
impending profit-gap is a particularly significant problem in
view of the industry’s annual growth rates.  Within the next
decade, the leading pharmaceutical companies may need to
bring to market ten times as many compounds per year as
they currently manage just to maintain growth levels of 10
to 15%, a rate anticipated by investors (Purcell, 1998;
Gardner, 1999).

Another disquieting development for the pharmaceutical
industry is that a large number of blockbuster drugs will
lose patent protection within the next few years (Purcell,
1998; Waldholtz et al. 1999).  According to one estimate,
drugs with sales approaching US $25 billion in revenues
will come off-patent by the year 2002 (Purcell, 1998).
Consider Merck and Co. (Whitehouse Station, NJ) as an
example.  Within the next two years, Merck will lose U.S.
patent protection for five major products, which brought the
company US $4.38 billion in U.S. sales and royalties during
1999 alone (Harris, 2000).

In light of these trends, the pharmaceutical industry needs
an infusion of new blood to sustain earnings. Consequently,
the industry is turning to bioinformatics-based approaches
to shore up drug discovery programs.  The adoption of
bioinformatics may lead to the most comprehensive
revolution of pharmaceutical research and development
since the late 1930s (Gardner, 1999).

A successful integration of bioinformatics methods into
drug discovery programs can improve target discovery and
validation, and accelerate drug development by focusing
research efforts on novel genomic targets (Bellavance et al.
1999).  However, this does not represent a simple
modification of traditional drug discovery.

There are two basic drug development approaches: a
traditional drug screening approach and the newer “rational
methods” (Gardner, 1999). Traditional drug development
programs, which are organized around defined diseases,
create an animal model of a disease as the first step in the
drug discovery process (Crooke, 1998).  This is illustrated
in Figure 3.  In this approach, the mechanism of drug action
may not be elucidated until after a chemical had
demonstrated therapeutic value in the clinic.  In other
words, the molecular target of the therapeutically useful
drug may be identified last.  In contrast, current drug
discovery often focuses around molecular targets thought to
be relevant to particular diseases, and mechanism of action
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is evaluated very early in the discovery process (Crooke,
1998).

The adoption of a bioinformatics-based approach to drug
discovery provides a further paradigm shift. With

bioinformatics, genotypes associated with pathophysiolgic
conditions may be defined first, and this will lead to the
identification of potential molecular targets (Crooke, 1998).
As shown in Figure 2, CuraGen is following this strategy.

Traditional Drug Discovery Strategy

Identify human disease of interest

Produce animal model of disease

Study effects of chemicals in
animal model

Identify disease-focused leads

Perform animal model and clinical
studies with lead drug

Elucidate drug mechanism of
action

Figure 3. The figure shows the strategy of a traditional drug development programs, as modified from Crooke (1998).

There is a widespread recognition by pharmaceutical
companies of the need to better leverage information and
informatics, because the path from gene to drug is neither
simple nor quick (Larvol and Wilkerson, 1998).  Some
pharmaceutical companies have been expanding their
bioinformatics groups, and adopting computer science
technologies proven in other industries, such as financial
trading (Gardner, 1999).  However, the establishment of a
new informatics framework for handling information
requires both technology and a change in management’s
views.  Some argue that the effective integration and use of

information will be the single biggest differentiator of
pharmaceutical R&D competitive advantage in the next
decade (Gardner, 1999).

One   consequence  of   the   rapid  developments   in   drug
discovery and development technologies has been a closing
of the traditional technological advantages that one
pharmaceutical company holds over another (Gardner,
1999).  Pharmaceutical companies have made large
investments in technologies such as genomics, microarrays,
high throughput sequencing and combinatorial chemistry,
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which has led to a fairly level playing field (Gardner,
1999).  As a result, the pharmaceutical R&D bottleneck has
moved from the creation of data about the activity of a
small number of lead compounds to the manipulation and
analysis of data to identify new targets.

Another consequence of the adoption of new technologies
for discovery research is that, instead of working up to two
to three targets slowly and in detail, a department may have
as many as 20 to 30 targets to work on at once (Gardner,
1999).  This increases the amount of communication
required to perform effective research.  Project managers
who previously devoted weeks to single projects at a time
must now be able multi-task those projects and be in a
position to make stop/go decisions about projects and target
molecules perhaps ten times as frequently as before
(Gardner, 1999).  As project timescales condense, the need
for interdisciplinary teams to interact and share data
increases, and a corporate culture of standardized data
collection with quality assurance must be established
(Gardner, 1999).  To meet the challenges posed by
pharmaceutical informatics in the next decade will require a
major alteration of infrastructure and investment in people,
networks, computers, and storage facilities.

Challenges for implementation of bioinformatics

Standardization for Data Integration

The commercialization of bioinformatics has spawned a
support industry that provides bioinformatics tools, a
function previously provided by university researchers.
These companies are providing new data analysis tools and
software platforms for data management, expression profile
analysis, links to sequence and annotation databases,
function prediction based on pathway information, data
mining, and data tracking of automated processes
(Pickering, 1999b).   Companies that implement these new
bioinformatics tools and software platforms are faced with
problems that arise when trying to compare, store, and
analyze data produced from multiple platforms (Pickering,
1999b; Ladd, 2000).  Since there are no clearly accepted
bioinformatics industry leaders, biotechnology and
pharmaceutical companies are operating one or more
outside systems with their own proprietary system to
produce expression data (Pickering, 1999b).  This situation
leads to a practice of capturing only the lowest common
denominator of data.

This problem is compounded in traditional pharmaceutical
companies (Murray-Rust, 1994).  The pharmaceutical
industry has built large systems for corporate computing
and traditional data processing, which reflect requirements
imposed by the regulatory authorities.  Security and
auditing are two important features of these systems.  In
contrast, bioinformatics has been developed in an academic
environment where the priorities are flexibility and
responsiveness (Murray-Rust, 1994).

The development of individual molecular biology databases
has generated a large variety of formats in their
implementations, resulting in a situation compared with the
tower of Babel (Benton, 1996; Frishman et al. 1998;
Pennisi, 1999).  The various Internet-based molecular
biology databases have their own unique navigation tools
and data storage formats, which make global searching
difficult (Pennisi, 1999).  Intercommunication between
databases of different structure and format requires
common semantic standards and controlled vocabulary in
annotations that describe the sequences (Frishman et al.
1998).  One of the key challenges in bioinformatics is to
move through the transitional period of collections of
incompatible components to integrated systems (Sobral,
1997; Jones and Franklin, 1998).

There are efforts to make the tools of bioinformatics as
standardized as possible, similar to the development of
standardized computer operating systems (Murray-Rust,
1994).   One of the best-known examples of this approach
is the BioStandards project of the European Bioinformatics
Institute (Cambridge, UK).  Funded jointly by the European
Bioinformatics Institute, the European Commission, and
several pharmaceutical companies, the project includes the
development and adaptation of databases and software tools
in terms of existing and emerging standards (Murray-Rust,
1994).  As another example, Molecular Dynamics and
Affymetrix have formed the Genetic Analysis Technology
Consortium to attempt to standardize the growing field of
microarray-based genetic analysis (“About the consortium”,
1998).  The consortium was created to provide a unified
technology platform to design, process, read and analyze
DNA arrays.

Thus, the integration of biological data will require some
form of standardization.  This is particularly important in
view of the wealth of data available from Internet
resources.  There is a need for integrated access of
information both within a company, and between
companies and the Internet.  Without a standard set by an
innovative product or competitor, these standards will have
to be set by cooperation between the industry, academia,
and government agencies.

Data Mining: Converting Data into Information

“Data is king.  The long-term winners will
generate it, interpret it, and apply it efficiently.”
Robert J. Olan, Chase Hambrecht and Quist
analyst (Licking et al. 2000).

Regardless of who wins the race to sequence the human
genome, the consequence of the race is more data.
Sequence data combined with expression data of functional
genomics is creating a bottleneck in the drug discovery
process: data analysis.  To place the problem in perspective,
one study indicates that a typical high-throughput screening
program in a large pharmaceutical company could have
generated 200,000 data points per year in the early 1990s
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(Drews, 1999).  Five years later, a similar screening
program generated five million to ten million data points,
which may grow to 50 million by the end of the year
(Drews, 1999).  According to a recent estimate, one
scientist can generate data in a few hours that might take
months to analyze using conventional software
(Brocklehurst et al. 1999).

Data mining encompasses the use of pattern recognition
technologies and statistical techniques to examine large
amounts of data (Wedin, 1999).  The objective of data
mining is to discover meaningful new correlations, patterns,
and trends.  Considering the bottleneck, data mining
technology appears to represent the pacing technology of a
company that uses bioinformatics for drug discovery.

The tools used for storage, retrieval, analysis, and
dissemination of biological data are yet very similar to the
original systems gathered together by researchers 15-20
years ago, and many of these are simple extensions of the
original academic systems (Gardner, 1999).  According to
Gardner (1999), relational databases are still rare, and
object-relational or fully object oriented systems are even
rarer in mainstream applications.

This need is being addressed by the adoption of knowledge
discovery approaches used for the business community, and
by the development of new technology (Klevecz, 1999;
Wedin, 1999; Persidis, 2000).  An example of the latter is
the development of visual data mining technology, which
was strongly motivated by genome sequencing projects
(Frishman et al. 1998).  The development of pattern
recognition tools is considered one of the fastest moving
areas in bioinformatics, an opportunity reflected in the
marketing of data mining software (Regalado, 1999).
Pharmaceutical companies, which lack the necessary in-
house expertise in informatics, are outsourcing informatics
work as a means to speed genomics-based drug discovery
and development (George, 1999; O’Neill, 1999).

According to Gardner and Flores (1999), the key
differentiator of competitive advantage will shift from
innovation in in vitro or in vivo biology to the exploitation
of available information for rapid and accurate decision
making.  If so, then why would the pharmaceutical industry
decide to buy informatics systems and services, rather than
develop the technology in-house?  Because now, there is a
race to discover diagnostic and therapeutic uses for new
nucleic acid molecules and proteins, and to acquire an
intellectual property position on those new uses.
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