Biotechnology of Human Disorders
EJB Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.3 No2, Issue of August 15, 2000.
© 2000 Universidad Católica de Valparaíso -- Chile Received May 23, 2000 / Accepted July 28, 2000
BIP INVITED REVIEW ARTICLE

Formation of highly porous biodegradable scaffolds
for tissue engineering

Antonios G. Mikos*
Department of Bioengineering, Rice University
6100 Main, MS 142, Houston, TX 77005-1892,USA
Tel: 1-713-348-5355
Fax: 1-713-348-5353
E-mail: mikos@rice.edu

Johnna S. Temenoff
Department of Bioengineering, Rice University
6100 Main, MS 142, Houston, TX 77005-1892, USA
Tel: 1-713-348-5355
Fax: 1-713-348-5353
E-mail: temenoff@rice.edu

Departments of Bioengineering and Chemical Engineering,
Rice University, 6100 Main, Houston, TX 77005-1892


*Corresponding author

Financial Support: National Institutes of Health (USA, Grant nos. R01-AR44381, R01-DE13031, and R29-AR42639), Whitaker Foundation (USA)


Keywords: Bioresorbable materials, Poly(glycolic acid), Poly(lactic acid), Porogen, Porous foams, Tissue regeneration.

BIP Article
Reprint (PDF)

Despite recent technological advances, thousands die each year while waiting for organ transplants due to lack of donor organs or efficient organ substitutes (Thomson et al. 1995). Although clinicians have tried to replace the function of failing organs mechanically (dialysis and heart-lung bypass machines), or through implantation of synthetic replacements (blood vessel and joint replacements), these are often only temporary solutions and do not allow the patient to completely resume normal activities (Thomson et al. 1995). Infection and device rejection are also serious concerns in such procedures (Ishaug-Riley et al. 1997).

The emerging field of tissue engineering may help to resolve many of these problems. Tissue engineering involves the use of cells to regenerate the damaged tissue, leaving only natural substances to restore organ function. It has been found that in order for the cells to maintain their tissue-specific functions once implanted, a substrate material must be inserted to aid in organization of the cells in three dimensions (Temenoff et al. in press). In considering substrate materials, it is imperative to chose one that exhibits good biocompatibility. This means that the material must not be "rejected" by the immune system. In addition, the mechanical properties of the scaffold must be sufficient so that it does not collapse during the patient's normal activities. As with all materials in contact with the human body, these scaffolds must be easily sterilizable to prevent infection (Temenoff and Mikos in press).

Both natural and synthetic materials have been researched for use as tissue engineering scaffolds. Although preliminary results are promising for substrates derived from natural materials, such as collagen, (Wakitani et al. 1994; Caplan et al. 1997; Grande et al. 1997; Solchaga et al. 1999), concerns about the feasibility of finding the large amounts of material needed for clinical applications has prompted other researchers to investigate the use of synthetic polymers. These materials can be easily mass-produced and their properties can be tailored for specific applications. This includes creating degradable polymers that allow room for tissue growth in the construct while eliminating the need for a second surgery to remove the implant (Temenoff and Mikos 2000).

In particular, many investigators have concentrated on synthetic biodegradable polymers that are already approved by the U.S. FDA as suture materials. The most common of these polymers are poly(glycolic acid) (PGA), poly(L-lactic acid) (PLLA) and their copolymer, poly(DL-lactic-co-glycolic acid) (PLGA) (Thomson et al. 1995). These polymers offer distinct advantages in that their sterilizability and relative biocompatibility have been well documented. Also, their degradation rates can be tailored to match that of new tissue formation.

In addition to degradation rate, certain physical characteristics of the scaffolds must be considered when designing a substrate to be used in tissue engineering. In order to promote tissue growth, the scaffold must have large a large surface area to allow cell attachment. This is usually done by creating a highly porous polymer foam. In these foams, the pore size should be large enough so that cells penetrate the pores, and the pores must be interconnected to facilitate nutrient exchange by cells deep within the construct (Temenoff et al. in press). These characteristics (porosity and pore size) are often dependent on the method of scaffold fabrication (Mikos et al. 1993a; Mikos et al. 1994; Mooney et al. 1996a; Nam and Park 1999b; Nam et al. 2000).

Several methods have been developed to create highly porous scaffolds, including fiber bonding (Mikos et al. 1993a), solvent casting/particulate leaching (Mikos et al. 1993b; Mikos et al. 1994), gas foaming (Mooney et al. 1996a; Nam et al. 2000) and phase separation (Lo et al. 1995; Whang et al. 1995; Lo et al. 1996; Schugens et al. 1996; Nam and Park 1999a; Nam and Park 1999b). This review compares these methods in terms of foam porosity, pore size, efficacy of promoting tissue growth and ease of use in a clinical setting. Of these methods, fiber bonding, solvent casting/particulate leaching, gas foaming/particulate leaching and liquid-liquid phase separation produce large, interconnected pores to facilitate cell seeding and migration. The fiber bonding, solvent casting/particulate leaching and gas foaming/particulate leaching methods exhibit good biocompatibility, making these techniques especially promising for future use in tissue-engineered cell-polymer constructs. However, almost all techniques described in this review require the use of organic solvents, which could reduce the ability of cells to form new tissues in vivo. Thus, long processing times to fully remove these solvents are necessary. To overcome this problem, other combinations of materials and pore-forming techniques must be explored to create constructs that can be fabricated during surgery and tailored for specific applications. It is only when these clinical design criteria have been addressed that tissue engineered constructs will see widespread use to aid patients suffering from various types of organ and tissue failure.

References


Athanasiou, K. A., Niederauer, G. G. and Agrawal, C. M. (1996). Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17:93-102.

Caplan, A. I., Elyaderani, M., Mochizuki, Y., Wakitani, S. and Goldberg, V. M. (1997). Principles of cartilage repair and regeneration. Clinical Orthopaedics and Related Research 342:254-269.

Freed, L. E., Marquis, J. C., Nohria, A., Emmanual, J., Mikos, A. G. and Langer, R. (1993). Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. Journal of Biomedical Materials Research 27:11-23.

Goldstein, A. S., Zhu, G., Morris, G. E., Meszlenyi, R. K. and Mikos, A. G. (1999). Effect of Osteoblastic Culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds. Tissue Engineering 5:421-433.

Grande, D. A., Halberstadt, C., Naughton, G., Schwartz, R. and Manji, R. (1997). Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. Journal of Biomedical Materials Research 34:211-220.

Ishaug-Riley, S. L., Crane-Kruger, G. M., Yaszemski, M. J. and Mikos, A. G. (1998). Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 19:1405-1412.

Ishaug, S. L., Crane, G. M., Miller, M. J., Yasko, A. W., Yaszemski, M. J. and Mikos, A. G. (1997). Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. Journal of Biomedical Materials Research 36:17-28.

Ishaug-Riley, S. L., Crane, G. M., Gurlek, A., Miller, M. J., Yasko, A. W., Yaszemski, M. J. and Mikos, A. G. (1997). Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery. Journal of Biomedical Materials Research 36:1-8.

Lo, H., Kadiyala, S., Guggino, S. E. and Leong, K. W. (1996). Poly(L-lactic acid) foams with cell seeding and controlled-release capacity. Journal of Biomedical Materials Research 30:475-484.

Lo, H., Ponticiello, M. S. and Leong, K. W. (1995). Fabrication of controlled release biodegradable foams by phase separation. Tissue Engineering 1:15-28.

Mikos, A. G., Thorsen, A. J., Czerwonka, L. A., Bao, Y., Langer, R., Winslow, D. N. and Vacanti, J. P. (1994). Preparation and characterization of poly(L-lactic acid) foams. Polymer 35:1068-1077.

Mikos, A. G., Bao, Y., Cima, L. G., Ingber, D. E., Vacanti, J. P. and Langer, R. (1993a). Preparation of Poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. Journal of Biomedical Materials Research 27:183-189.

Mikos, A. G., Sarakinos, G., Leite, S. M., Vacanti, J. P. and Langer, R. (1993b). Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14:323-330.

Mooney, D. J., Baldwin, D. F., Suh, N. P., Vacanti, J. P. and Langer, R. (1996a). Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417-1422.

Mooney, D. J., Mazzoni, C. L., Breuer, C., McNamara, K., Hern, D. and Vacanti, J. P. (1996b). Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials 17:115-124.

Nam, Y. S., Yoon, J. J. and Park, T. G. (2000). A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. Journal of Biomedical Materials Research (Applied Biomaterials) 53:1-7.

Nam, Y. S. and Park, T. G. (1999a). Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20:1783-1790.

Nam, Y. S. and Park, T. G. (1999b). Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. Journal of Biomedical Materials Research 47:8-17.

Park, T. G. (1999). New approaches to fabricate highly porous tissue scaffolds. fourth Asia-Pacific Conference on Medical and Biological Engineering, Seoul, Korea, 1999.

Schugens, C., Maquet, V., Grandfils, C., Jerome, R. and Teyssie, P. (1996). Polylactide macroporous biodegradable implants for cell transplantation II. Preparation of polylactide foams for liquid-liquid phase separation. Journal of Biomedical Materials Research 30:449-461.

Shastri, V. P., Martin, I. and Langer, R. (2000). Macroporous polymer foams by hydrocarbon templating. Proceedings of the National Academy of Sciences USA 97:1970-1975.

Solchaga, L. A., Dennis, J. E., Goldberg, V. M. and Caplan, A. I. (1999). Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. Journal of Orthopaedic Research 17:205-213.

Sperling, L. H. (1992). Introduction to physical polymer science, Second edition. John Wiley and Sons, New York.

Temenoff, J. S., Lu, L. and Mikos, A. G. (in press). Bone tissue engineering using synthetic polymer scaffolds. In: Bone Engineering. J.E. Davies. Toronto, University of Toronto, (in press).

Temenoff, J. S. and Mikos, A. G. (in press). Injectable biodegradable materials for orthopaedic tissue engineering. Biomaterials (in press).

Temenoff, J. S. and Mikos, A. G. (2000). Review: Tissue engineering for regeneration of articular cartilage. Biomaterials 21:431-440.

Thomson, R. C., Yaszemski, M. J., Powers, J. M. and Mikos, A. G. (1998). Hydroxyapatite fiber reinforced poly(a-hydroxy ester) foams for bone regeneration. Biomaterials 19:1935-1943.

Thomson, R. C., Wake, M. C., Yaszemski, M. J. and Mikos, A. G. (1995). Biodegradable polymer scaffolds to regenerate organs. Advances in Polymer Science 122:245-274.

Wakitani, S., Goto, T., Pineda, S. J., Young, R. G., Mansour, J. M., Caplan, A. I. and Goldberg, V. M. (1994). Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. Journal of Bone and Joint Surgery 76-A:579-592.

Whang, K., Thomas, C. H., Healy, K. E. and Nuber, G. (1995). A novel method to fabricate bioabsorbable scaffolds. Polymer 36:837-842.

 
Supported by UNESCO / MIRCEN network
Home | Mail to Editor | Search | Archive