Microbial Biotechnology
Process Biotechnology

Biotechnology Industry

Electronic Journal of Biotechnology ISSN: 0717-3458 Vol. 8 No. 2, Issue of August 15, 2005
© 2005 by Pontificia Universidad Católica de Valparaíso -- Chile Received November 22, 2004 / Accepted March 28, 2005
RESEARCH ARTICLE

Continuous citric acid secretion by a high specific pH dependent active transport system in yeast Candida oleophila ATCC 20177

Savas Anastassiadis*#
Department of Environmental Engineering
School of Engineering
Democritus University of Thrace
67100 Xanthi, Greece
E-mail: sanasta@env.duth.gr

Hans-Jürgen Rehm
Institute of Microbiology
University of Münster
Corrensstr. 3, 48149 Münster, Germany
(retired Professor)

Website: http://www.greekbiotechnologycenter.gr

*Corresponding author


Financial support: Part of the work that has been carried out at the Institute of Biotechnology 2 of Research Centre Jülich (Germany) was financed by Haarmann and Reimer, a daughter company of the company Bayer, Leverkusen, Germany.

Keywords: active citrate export, citric acid fermentation, energy consuming citric acid secretion, specific active transport system.

Present address: #Research in Biotechnology, Co., Vat. #: 108851559. Avgi/Sohos, 57002 Thessaloniki, Greece; Tel. +30-2395-051324; +30-6973-801395 (cellular); Tel./Fax. +30-2395-051470, E-mail: sanastassiadis@netscape.net.

Abstract
Full Text

The pH influence on continuous citric acid secretion was investigated in Candida oleophila ATCC 20177 (var.) under NH4+ limiting state steady conditions, using glucose. Highest citric acid concentration of 57.8 g/l, citrate/isocitrate ratio of 15.6, space-time yield of 0.96 g/(l x hr) and biomass specific productivity of 0.041 g/(g x hr) were obtained at pH 5 and 60 hrs residence time. Only 22.8 g/l (39.4%) and a ratio of 9.9 were achieved at pH 6 pH and 12.4 g/l (21.5%) and a ratio of 3.7 at pH 3. Under non producing conditions, in excess of nitrogen, biomass concentration increased at raising pH. An iron concentration of 200 ppm was determined in biomass of C. oleophila at pH 5, compared with only 26 ppm found at pH 3 (factor 7.7). Intra- and extracellular concentrations of citrates and glucose confirmed the existence of a high specific, pH dependent active transport system for citrate secretion, while isocitrate isn't a high-affine substrate, displaying a strong correlation with ATP/ADP ratio. Differences between extra- and intracellular concentration of citrate higher than 1 and up to about 60 were determined. The active transport systemfor citrate excretion appears to be the main speed-determining factor in citrate overproduction by yeasts.

 
Supported by UNESCO / MIRCEN network