Marine Biotechnology

Electronic Journal of Biotechnology ISSN: 0717-3458  
© 2006 by Pontificia Universidad Católica de Valparaíso -- Chile  
BIP RESEARCH  ARTICLE

Identification of phase relative genes in tetrasporophytes and female gametophytes of Gracilaria/Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta)

Xueying Ren
College of Marine Life Sciences
Ocean University of China
Qingdao, 266003, P. R. China
Tel:086 532 82032789
E-mail: rxyren2004409@yahoo.com.cn

Xuecheng Zhang*
College of Marine Life Sciences
Ocean University of China
Qingdao, 266003, P. R. China
Tel:086 532 82032789
E-mail: xczhang@ouc.edu.cn

Zhenghong Sui
College of Marine Life Sciences
Ocean University of China
Qingdao, 266003, P. R. China
Tel:086 532 82032789
E-mail: suizhengh@ouc.edu.cn  

*Corresponding author

Financial support: National Scientific Foundation of China (No. 30170736) and National “863” High-tech Program of China (No. 2004AA603220).

Keywords: Gracilaria/Gracilariopsis lemaneiformis, female gametophyte, suppression subtractive hybridization, tetrasporophyte, Virtual Northern blot.

Abbreviations:

GAPDH: Glyceraldehyde-3- phosphate dehydrogenase
PCR: polymerase chain reaction
SSH: suppression subtractive hybridization
TPK: thiamin pyrophosphokinase
TPP: thiamin pyrophosphate


BIP Article Reprint (PDF)

Gracilaria/Gracilariopsis lemaneiformis, an economically important agarophyte, has been under cultivation on a large scale in China and has been appreciated as a food and feed for culturing marine animals and formerly as a binding matural in the preparation of lime for painting walls. The most important use of Gracilaria, however, is the production of agar (Tseng, 2001). Besides its economic importance, G. lemaneiformis is also an ideal material for a variety of genetical studies owning the following traits (Zhang et al. 2004). Firstly, it can complete its life cycle under laboratory conditions. Secondly, pigmentation and morphological mutants are easy to be generated by physical or chemical mutagenesis. Thirdly, tetraspores and carpospores can be obtained at anytime under proper culture conditions.

The species possesses three isomorphic life-history phases, gametophyte, carposporophyte and tetrasporophyte. Phase differentiation is associated with numerous important physiological changes and many genes are developmentally regulated and expressed in a phase relative manner. Since 1976, investigations have been conducted on differential detection of proteins to find phase relative genes in algae (Hoxmark, 1976; Hushovd et al. 1982). Due to the drawbacks of applicable methods at that time, there were no satisfactory results. With the development of molecular biology, large-scale gene expression studies have been undertaken to understand the molecular mechanisms of phase differentiation in algae, such as Liu et al. (1994) and Sun et al. (2002). Despite these advances, the molecular mechanisms of phase differentiation in algae are still poorly understood and many phase relative genes remain to be discovered. Suppression subtractive hybridization (SSH) was developed by Diatchenko et al. (1996) and turned out to be a successful tool for rapid screening of differentially expressed genes (Wei et al. 2001; Caturla et al. 2002; Lee et al. 2002; Osherov et al. 2002; Cramer and Lawrence, 2004). Under this background, SSH was performed between RNA isolated from tetrasporophytes and female gametophytes of G. lemaneiformis. The findings in this report enhance our understandings of the phase differentiation process in Gracilaria.

In this study, 14 cDNAs were isolated and sequence-identified. Virtual Northern blot was used to study the different expression profiles. Clone SSH4 had high homology with other reported Rab GTPases, whose expression was a little bit higher (0.3 fold, p < 0.05) in female gametophytes compared to tetrasporophytes. This increase might enhance vesicle-mediated transports. It was observed that the expression of Rab5a was up-regulated during root development in rice Oryza sative L., maybe because endocytosis was responsible for the uptake of essential nutrients from the external environment (Wang et al. 2002).

Clone SSH 302 was homologous to thiamin pyrophosphokinase (TPK) (EC 2.7.6.2). TPK catalyzes the pyrophosphorylation of thiamin with adenosine 5'-triphosphate to form thiamin pyrophosphate (TPP). TPP is a necessary compound associated with glycolysis and tricarboxylic acid cycle. Thus, the differential expression of the TPK gene during phase differentiation in G. lemaneiformis could cause energy difference between the two phases.

Clone SSH407 had homology to GMP synthase. By densitometric analysis of blots normalized to GAPDH, the expression of SSH407 increased nearly 3 fold in tetrasporophytes as compared to female gametophytes. Clone SSH424 was homologous to RP42 which was developmentally regulated and may be involved in proliferative functions (Mas et al. 2000). Clone SSH528 was homologous to aspartate aminotransferase which was reported to be correlated with the content of certain amino acids, such as the content of cysteine, asparagine, glutamine and aspartic acid (O'Farrell et al. 1997). As a result of the differential expressions of the above metabolism involved genes, the amount of some nucleic acids and amino acids synthesized may be different between the two developmental stages. Consequently, the levels of metabolism are probably different between them. This is consistent with the fact that they are different in some physiological characters such as growth rate, etc. (Kain and Destombe, 1995; Zhang and Van der Meer, 1988). Therefore, the genes identified in this study may be utilized as novel molecular markers in future genetic breeding of G. lemaneiformis.

Among the genes of unknown functions, clone SSH391 did not hybridize with either of the samples, maybe because its expression level was too low to be detected. Two cDNAs are false positive, expressed at the same level between the two samples. Of particular interest is clone SSH466 which appears to be expressed solely in tetrasporophytes and is likely to be a tetrasporophyte-specific gene. Clone SSH486 showed significantly differential expression and increased 4.2 fold in tetrasporophytes compared to female gametophytes. It will be of great interest to study the specific role of clone SSH486 during phase differentiation in Gracilaria. Future studies will be focused on cloning the full-length cDNA sequences of these genes and using in situ hybridization and gene disruption techniques, etc. to elucidate their functions. The identification and characterization of all these differentially expressed genes will provide important clues to the probable metabolic pathways and/or structural features unique to the maturation of red algae

References

CATURLA, Mercé; CHAPARRO, Cristian; SCHROEYERS, Katrien and HOLSTERS, Marcelle. Suppression subtractive hybridization to enrich low-abundance and submergence-enhanced transcripts of adventitious root primordia of Sesbania rostrata. Plant Science, June 2002, vol. 162, no. 6, p. 915-921. [CrossRef]

CRAMER, Robert A. and LAWRENCE, Christopher B. Identification of Alternaria brassicicolagenes expressed in planta during pathogenesis of Arabidopsis thaliana. Fungal Genetics and Biology, February 2004, vol. 41, no. 2, p. 115-128. [CrossRef]

DIATCHENKO, Luda; LAU, Yun-Fai Chris; CAMPBELL, Aaron P.; CHENCHIK, Alex; MOQADAM, Fauzia; HUANG, Betty; LUKYANOV, Sergey; LUKYANOV, Konstantin; GURSKAYA, Nadya; SVERDLOV, Eugene D. and SIEBERT, Paul D. Suppression subtractive hybridization: a method for generating differentially regulated or tissue specific cDNA probes and libraries. Proceedings of the National Academy of Sciences of the United States of America, June 1996, vol. 93, no. 12, p. 6025-6030.

HOXMARK, R.C. Protein composition of different stages in the life cycle of Ulva mutabilis, Foeyn. Planta, 1976, vol. 130, no. 3, p. 327-332.

HUSHOVD, O.T.; GULLIKSEN, O.M. and NORDBY, O. Absence of major differences between soluble proteins from haploid gametophytes and diploid sporophytes in the green algae Ulva mutabilis Foeyn. Planta, 1982, vol. 156, no. 1, p. 89-91.

KAIN, J.M. and DESTOMBE, C. A review of life history, reproduction and phenology of Gracilaria. Journal of Applied Phycology, 1995, vol. 7, no. 3, p. 269-281.

LEE, Kai-Fai; YAO, Yuan-Qing; KWOK, Ka-Leung; XU, Jia-Sen and YEUNG, William S. B. Early developing embryos affect the gene expression patterns in the mouse oviduct. Biochemical and Biophysical Research Communications, March 2002, vol. 292, no. 2, p. 564-570. [CrossRef]

LIU, Qing Yan; VAN DER MEER, John P. and REITH, Michael E. Isolation and characterization of phase specific complementary DNAs from sporophytes and gametophytes of Porphyra purpurea (Rhodophyta) using subtracted complementary DNA libraries. Journal of Phycology, June 1994, vol. 30, no 3, p. 513-520. [CrossRef]

MAS, Christophe; BOURGEOIS, Francine; BULFONE, Alessandro; LEVACHER, Béatrice; MUGNIER, Claude and SIMONNEAU, Michel. Cloning and expression analysis of a novel gene, RP42, mapping to an Autism susceptibility locus on 6q16. Genomics, April 2000, vol. 65, no. 1, p. 70-74. [CrossRef]

O'FARRELL, Paul A.; SANNIA, Giovanni; WALKER, John M. and DOONAN, Shawn. Cloning and Sequencing of Aspartate Aminotransferase from Thermus aquaticus YT1. Biochemical and Biophysical Research Communications, October 1997, vol. 239, no. 3, p. 810-815. [CrossRef]

OSHEROV, Nir; MATHEW, John; ROMANS, Angela and MAY, Gregory S. Identification of conidial-enriched transcripts in Aspergillus nidulans using suppression subtractive hybridization. Fungal Genetics and Biology, November 2002, vol. 37, no. 2, p. 197-204. [CrossRef]

SUN, X.; YANG, G.P.; MAO, Y.X.; ZHANG, X.C. and SUI, Z.H. Analysis of expressed sequence tags of a marine red alga, Gracilaria lemaneiformis. Progress in Natural Science, July 2002, vol. 12, no. 7, p. 518-523.

TSENG, C.K. Algal biotechnology industries and research activities in China. Journal of Applied Phycology, August 2001, vol.13, no. 4, p. 375-380. [CrossRef]

WANG, Xiaobing B.; XIA, Ming; CHEN, Qingshuang S.; WU, Zhongchang C. and WU, Ping. Identification of a new small GTP-binding protein gene OsRab5a, genomic organization, and expression pattern analysis during nitrate supply and early nutrient starvation in rice (Oryza sativa L.) root. Plant Science, August 2002, vol. 163, no. 2, p. 273-280. [CrossRef]

WEI, Huijun; SHERER, Mario; SINGH, Archana; LIESE, Ralf and FISCHER, Reinhard. Aspergillus nidulansα-1, 3 Glucanase (Mutanase), mutA, is expressed during sexual development and mobilizes mutan. Fungal Genetics and Biology, December 2001, vol. 34, no. 3, p. 217-227. [CrossRef]

ZHANG, X.C. and VAN DER MEER, J.P. A genetic study on Gracilaria sjoestedtii. Canadian Journal of Botany, 1988, vol. 66, no. 10, p. 2022-2026.

ZHANG, X.C.; QING, S.; MA, J.H. and XU, P. The Genetics of Marine Algae. Beijing, Agricultural Press of China, 2004, 335 p. ISBN 7-109-09525-8.

Note: Electronic Journal of Biotechnology is not responsible if on-line references cited on manuscripts are not available any more after the date of publication.

 
 
Supported by UNESCO / MIRCEN network 
Home | Mail to Editor | Search | Archive