Plant Biotechnology

Electronic Journal of Biotechnology ISSN: 0717-3458 Vol. 9 No. 5, Issue of October 15, 2006
© 2006 by Pontificia Universidad Católica de Valparaíso -- Chile Received November 2, 2005 / Accepted May 3, 2006
DOI: 10.2225/vol9-issue5-fulltext-11  
RESEARCH ARTICLE

Elicitation of peroxidase activity in genetically transformed root cultures of Beta vulgaris L.

Thimmaraju Rudrappa
Plant Cell Biotechnology Department
Central Food Technological Research Institute
Mysore 570 020, India
Tel: 91 821 2516502
Fax: 91 821 2517233
E-mail: rajurt@UDel.Edu

Bhagyalakshmi Neelwarne*
Plant Cell Biotechnology Department
Central Food Technological Research Institute
Mysore 570 020, India
Tel: 91 821 2516502
Fax: 91 821 2517233
E-mail: blakshmi_1999@yahoo.com

Venkatachalam Lakshmanan
Plant Cell Biotechnology Department
Central Food Technological Research Institute
Mysore 570 020, India
Tel: 91 821 2516502
Fax: 91 821 2517233
E-mail: genevenki@yahoo.com

Sreedhar Reddampalli Venkataramareddy
Plant Cell Biotechnology Department
Central Food Technological Research Institute
Mysore 570 020, India
Tel: 91 821 2516502
Fax: 91 821 2517233
E-mail: rvsree@rediffmail.com

Ravishankar Gokare Aswathanarayana
Plant Cell Biotechnology Department
Central Food Technological Research Institute
Mysore 570 020, India
Tel: 91 821 2516502
Fax: 91 821 2517233
E-mail: pcbt@cftri.res.in

*Corresponding author

Financial support: Senior and Junior Research Fellowship from the Council of Scientific and Industrial Research, India.

Keywords: Aspergillus, calcium, culture filtrate, dried cell powder, elicitor, glutathione, methyljasmonate, Rhizophus, thidiazuron.

Abbreviations:

CF: culture filtrate
DCP: dry cell powder
GSH: glutathione
Mej: methyl jasmonate
MS: Murashige and Skoog
PDA: potato dextrose agar
POD: peroxidase
PP: phenylpropanoid
TDZ: thidiazuron

Abstract
Full Text

Genetically transformed roots of red beet produce copious levels of peroxidase (POD) - a multifunctional enzyme with a number of commercial applications. In an effort to elicit the POD activity, the cultures were treated with biotic elicitors such as dry cell powders of microbial cultures (0.1-0.5% w/v) and the respective culture filtrates (1-5% v/v). Similarly, abiotic elicitors, particularly metal ions (2-8 folds of that present in the nutrient medium), the plant hormone Thidiazuron (at 0.25-1 ppm) and other bio-molecules such as Glutathione (at 0.5-10 mM) and Methyl jasmonate (at 20-100 µM) were used. It was observed that dry cell powder of Candida versatilis significantly elicited the enzyme activity (3.52-fold higher than the control) followed by glutathione (3.44-fold) and Rhizophus oligosporus (3.09-fold). Among abiotic elicitors, thidiazuron, Mg and Ca salts elicited 2.49, 3.03 and 2.8 fold activities respectively. While most of the biotic elicitors were effective when added on 15th day of culture, the abiotic elicitors were effective when added on 20th day. Combination of highly effective elicitors indicated that glutathione (1 mM) and dry cell powder of R. oligosporus caused a 4-fold enhancement in enzyme activity, accounting for 10.9 x 106 U L-1. The present study is the first report on red beet hairy roots where a large number of elicitors have been systematically screened and their probable involvements in eliciting POD activities have been discussed.

Supported by UNESCO / MIRCEN network
Home | Mail to Editor | Search | Archive